논문 상세보기

신경망을 이용한 고경도강 선삭시 공구 마멸 검출에 관한 연구 KCI 등재

A Study on Detection of Tool Wear using Neural Network in Hard turing

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/210259
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국기계기술학회지 (Journal of the Korean Society of Mechanical Technology)
한국기계기술학회 (Korean Society of Mechanical Technology)
초록

High hardness steel generally means its hardness over HRC45. This using CBN tools for turning. Tool breakage and damage during turning process cause material loss and additional tool cost. If it is predicted during the process and accumulate this data as a turning parameter it will be of help to turning mechanism understanding. For this purpose neural technology give beneficial as prediction, categorization, searching and enable nolinear function for pre-diagnosis algorithm. In this study we appraise the accuracy of prediction by applying backpropagation neural networks (BPNs) method in the high hardness steel turning.

목차
Abstract
 1. 서론
 2. 신호의 처리과정
  2.1 신호의 획득
  2.2 신호의 전처리과정
 3. 고경도강에 대한 가공 측정
 4. 신경회로망의 설계
 5. 결론
 참고문헌
저자
  • 변동해(한국폴리텍대학 김제캠퍼스 컴퓨터응용기계과) | D. H. Byun