Pluripotent stem cells can be derived from both pre- and post-implantation embryos. Embryonic stem cells (ES cells), derived from inner cell mass (ICM) of blastocyst are naïve pluripotent and epiblast stem cells (EpiSCs) derived from post-implantation epiblast are primed pluripotent. The phenotypes and gene expression patterns of the two pluripotent stem cells are different each other and EpiSCs thought to be in a more advanced pluripotent (primed pluripotent state) than mouse ES cells (naïve pluripotent state). Therefore, we questioned whether EpiSCs are less potential to be differentiated into specialized cell types in vitro. EpiSCs were isolated from 5.5~6.5 day post coitum mouse embryos of the post-implantation epiblast. The EpiSCs could differentiate into all tree germ layers in vivo, and expressed pluripotency markers (Oct4, Nanog). Interestingly, EpiSCs also were able to efficiently differentiate into neural stem cells (NSCs). The NSCs differentiated from EpiSCs (EpiSC-NSCs) expressed NSC markers (Nestin, Sox2, and Musasi), self-renewed over passage 20, and could differentiate into two neural subtypes, neurons, astrocytes and oligodendrocytes. Next, we compared global gene expression patterns of EpiSC-NSCs with that of NSCs differentiated from ES cells and brain tissue. Gene expression pattern of brain tissue derived NSCs were closer to ES cell-derived NSCs than EpiSC-NSCs, indicating that the pluripotent stem cell-derived somatic cells could have different characteristics depending on the origin of pluripotent stem cell types. * This work was supported by the Next Generation Bio-Green 21 Program funded by the Rural Development Administration (Grant PJ 008009).