논문 상세보기

다중 형태 데이터를 위한 요소선택 방법 KCI 등재

Feature Selection for Mixed type of Data

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/22670
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국산업경영시스템학회지 (Journal of Society of Korea Industrial and Systems Engineering)
한국산업경영시스템학회 (Society of Korea Industrial and Systems Engineering)
초록

데이터마이닝의 사전 단계에서 데이터의 차원(Dimensionality)을 줄이기 위한 단계로서 많은 요소선택(Feature Selection)방법들이 개발되었다. 이 방법은 결과를 예측하거나 데이터를 설명하고자 할 때 어떤 요소들이 관련이 있는지를 결정하는 과정을 포함한다. 또한 이 방법은 데이터의 크기에 대한 확장성(Scalability)를 향상시키며 학습 모델을 더욱 이해하기 쉽도록 줄 수 있다. 이 논문에서는 NP(Nested Partition)

저자
  • 양재경 | Jaekyung Yang
  • 이태한 | Taehan Lee