검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        2.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        DEA(data envelopment analysis) is a technique for evaluation of relative efficiency of decision making units (DMUs) that have multiple input and output. A DEA model measures the efficiency of a DMU by the relative position of the DMU’s input and output in the production possibility set defined by the input and output of the DMUs being compared. In this paper, we proposed several DEA models measuring the multi-period efficiency of a DMU. First, we defined the input and output data that make a production possibility set as the spanning set. We proposed several spanning sets containing input and output of entire periods for measuring the multi-period efficiency of a DMU. We defined the production possibility sets with the proposed spanning sets and gave DEA models under the production possibility sets. Some models measure the efficiency score of each period of a DMU and others measure the integrated efficiency score of the DMU over the entire period. For the test, we applied the models to the sample data set from a long term university student training project. The results show that the suggested models may have the better discrimination power than CCR based results while the ranking of DMUs is not different.
        4,000원
        3.
        2019.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Most of the data envelopment analysis (DEA) models evaluate the relative efficiency of a decision making unit (DMU) based on the assumption that inputs in a specific period are consumed to produce the output in the same period of time. However, there may be some time lag between the consumption of input resources and the production of outputs. A few models to handle the concept of the time lag effect have been proposed. This paper suggests a new multi-period input DEA model considering the consistent time lag effects. Consistency of time lag effect means that the time delay for the same input factor or output factor are consistent throughout the periods. It is more realistic than the time lag effect for the same output or input factor can vary over the periods. The suggested model is an output-oriented model in order to adopt the consistent time lag effect. We analyze the results of the suggested model and the existing multi period input model with a sample data set from a long-term national research and development program in Korea. We show that the suggested model may have the better discrimination power than existing model while the ranking of DMUs is not different by two nonparametric tests.
        4,000원
        4.
        2010.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        데이터마이닝의 사전 단계에서 데이터의 차원(Dimensionality)을 줄이기 위한 단계로서 많은 요소선택(Feature Selection)방법들이 개발되었다. 이 방법은 결과를 예측하거나 데이터를 설명하고자 할 때 어떤 요소들이 관련이 있는지를 결정하는 과정을 포함한다. 또한 이 방법은 데이터의 크기에 대한 확장성(Scalability)를 향상시키며 학습 모델을 더욱 이해하기 쉽도록 줄 수 있다. 이 논문에서는 NP(Nested Partition)
        4,000원
        5.
        2006.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
          본 연구에서 조합 최적화(Combinatorial Optimization) 이론에 바탕을 두고 있는 네스티드 분할(Nested Partition, 이하 NP) 방법을 이용한 최적화 기반 요소선택 방법(Feature Selection)을 제안한다. 이 새로운 방법은 좋은 요소 부분집합을 찾는 휴리스틱 탐색 절차를 채용하고 있으며 데이터의 인스턴스(Instances 또는 Records)의 무작위 추출(Random Sampling)을 이용하여 이 요소선택
        4,000원