The microstructure and mechanical property of hot-pressed composites with a different temperature for atmosphere changing from H to Ar have been studied. When atmosphere-changed from H to Ar gas at 145, the hot-pressed composite was characterized by inhomogeneous microstructure and low fracture strength. On the contrary, when atmosphere-changed at low temperature of 110 the composite showed more homogeneous microstructure, higher fracture strength and smaller deviation in strength. Based on the thermodynamic consideration and microstructural analysis, it was interpreted that the Cu wetting behavior relating to the formation of CuAlO is probably responsible for strong dependence of microstructure on atmosphere changing temperature. The reason for a strong sensitivity of fracture strength and especially of its deviation to atmosphere changing temperature was explained by the microstructural inhomogeneity and by the role of CuAlO phase on the interfacial bonding strength.