검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2019.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study analyzes the mechanical properties, including the attrition rate, of 50 μm size yttria-stabilized zirconia (YSZ) beads with different microstructures and high-energy milling conditions. The yttria distribution in the grain and grainboundary of the fully sintered beads relates closely to Vickers hardness and the attrition rate of the YSZ beads. Grain size, fractured surfaces, and yttrium distribution are analyzed by electronic microscopes. For standardization and a reliable comparison of the attrition rate of zirconia beads with different conditions, Zr content in milled ceramic powder is analyzed and calculated by X-ray Fluorescence Spectrometer(XRF) instead of directly measuring the weight change of milled YSZ beads. The beads with small grain sizes sintered at lower temperature exhibit a higher Vickers hardness and lower attrition rate. The attrition rate of 50 μm YSZ beads is measured and compared with the various materials properties of ceramic powders used for high-energy milling. The attrition rate of beads appears to be closely related to the Vickers hardness of ceramic materials used for milling, and demonstrates more than a 10 times higher attrition rate with Alumina(Hv ~1650) powder than BaTiO3 powder (Hv ~315).
        4,000원
        3.
        2006.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of Cu content on microstructure and mechanical properties of nano-sized Cu dispersed nanocomposites was investigated. The nanocomposites with Cu content of 2.5 to were prepared by reduction and hot-pressing of powder mixtures. The nanocomposites with Cu content of 2.5 and exhibited the maximum fracture strength of 820MPa and enhanced toughness compared with monolithic . The strengthening was mainly attributed to the refinement of matrix grains. The toughening mechanism was discussed by the observed microstructural feature based on crack bridging
        4,000원
        5.
        2004.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The microstructure and mechanical property of hot-pressed composites with a different temperature for atmosphere changing from H to Ar have been studied. When atmosphere-changed from H to Ar gas at 145, the hot-pressed composite was characterized by inhomogeneous microstructure and low fracture strength. On the contrary, when atmosphere-changed at low temperature of 110 the composite showed more homogeneous microstructure, higher fracture strength and smaller deviation in strength. Based on the thermodynamic consideration and microstructural analysis, it was interpreted that the Cu wetting behavior relating to the formation of CuAlO is probably responsible for strong dependence of microstructure on atmosphere changing temperature. The reason for a strong sensitivity of fracture strength and especially of its deviation to atmosphere changing temperature was explained by the microstructural inhomogeneity and by the role of CuAlO phase on the interfacial bonding strength.
        4,000원