간행물

한국재료학회지 KCI 등재 SCOPUS Korean Journal of Materials Research

권호리스트/논문검색
이 간행물 논문 검색

권호

제29권 제4호 (2019년 4월) 10

논문

1.
2019.04 구독 인증기관 무료, 개인회원 유료
Pb(Zr,Ti)O3 (PZT) is used for the various piezoelectric devices owing to its high piezoelectric properties. However, lead (Pb), which is contained in PZT, causes various environment contaminations. (K,Na)NbO3 (NKN) is the most well-known candidate for a lead-free composition to replace PZT. A single crystal has excellent piezoelectric-properties and its properties can be changed by changing the orientation direction. It is hard to fabricate a NKN single crystal due to the sodium and potassium. Thus, (Na,K)NbO3-Ba(Cu,Nb)O3 (NKN-BCuN) is chosen to fabricate the single crystal with relative ease. NKNBCuN pellets consist of two parts, yellow single crystals and gray poly-crystals that contain copper. The area that has a large amount of copper particles may melt at low temperature but not the other areas. The liquid phase may be responsible for the abnormal grain growth in NKN-BCuN ceramics. The dielectric constant and tan δ are measured to be 684 and 0.036 at 1 kHz in NKN-BCuN, respectively. The coercive field and remnant polarization are 14 kV/cm and 20 μC/cm2.
4,000원
2.
2019.04 구독 인증기관 무료, 개인회원 유료
In this study, three kinds of bainitic steel plates are manufactured by varying the chemical compositions and their microstructures are analyzed. Tensile and Charpy impact tests are performed at room and low temperature to investigate the correlation between microstructure and mechanical properties. In addition, heat affected zone (HAZ) specimens are fabricated by a simulation of welding processes, and the HAZ microstructure is analyzed. The base steel that has the lowest carbon equivalent has the highest volume fraction of acicular ferrite and the lowest volume fraction of secondary phases, so the strength is the lowest and the elongation is the highest. The Mo steel has a higher volume fraction of granular bainite and more secondary phases than the base steel, so the strength is high and the elongation is low. The CrNi steel has the highest volume fraction of the secondary phases, so the strength is the highest and elongation is the lowest. The tensile properties of the steels, namely, strength and elongation, have a linear correlation with the volume fraction of secondary phases. The Mo steel has the lowest Charpy impact energy at -80 oC because of coarse granular bainite. In the Base-HAZ and Mo-HAZ specimens, the hardness increases as the volume fraction of martensite-austenite constituents increases. In the CrNi-HAZ specimen, however, hardness increases as the volume fraction of martensite and bainitic ferrite increases.
4,000원
3.
2019.04 구독 인증기관 무료, 개인회원 유료
This study examines the role of the nano- and micro-particle ratio in dispersion stability and mechanical properties of composite resins for SLA(stereolithography) 3D printing technology. VTES(vinyltriethoxysilane)-coated ZrO2 ceramic particles with different nano- and micro-particle ratios are prepared by a hydrolysis and condensation reaction and then dispersed in commercial photopolymer (High-temp) based on interpenetrating networks(IPNs). The coating characteristics of VTES-coated ZrO2 particles are observed by FE-TEM and FT-IR. The rheological properties of VTEScoated ZrO2/High-temp composite solution with different particle ratios are investigated by rheometer, and the dispersion properties of the composite solution are confirmed by relaxation NMR and Turbiscan. The mechanical properties of 3Dprinted objects are measured by a tensile test and nanoindenter. To investigate the aggregation and dispersion properties of VTES-coated ZrO2 ceramic particles with different particle ratios, we observe the cross-sectional images of 3D printed objects using FE-SEM. The 3D printed objects of the composite solution with nano-particles of 80 % demonstrate improved mechanical characteristics.
4,000원
4.
2019.04 구독 인증기관 무료, 개인회원 유료
Copper electroplating and electrode patterning using a screen printer are applied instead of lithography for heterostructure with intrinsic thin layer(HIT) silicon solar cells. Samples are patterned on an indium tin oxide(ITO) layer using polymer resist printing. After polymer resist patterning, a Ni seed layer is deposited by sputtering. A Cu electrode is electroplated in a Cu bath consisting of Cu2SO4 and H2SO4 at a current density of 10 mA/cm2. Copper electroplating electrodes using a screen printer are successfully implemented to a line width of about 80 μm. The contact resistance of the copper electrode is 0.89 mΩ·cm2, measured using the transmission line method(TLM), and the sheet resistance of the copper electrode and ITO are 1 Ω/□ and 40 Ω/□, respectively. In this paper, a screen printer is used to form a solar cell electrode pattern, and a copper electrode is formed by electroplating instead of using a silver electrode to fabricate an efficient solar cell electrode at low cost.
4,000원
5.
2019.04 구독 인증기관 무료, 개인회원 유료
This study analyzes the mechanical properties, including the attrition rate, of 50 μm size yttria-stabilized zirconia (YSZ) beads with different microstructures and high-energy milling conditions. The yttria distribution in the grain and grainboundary of the fully sintered beads relates closely to Vickers hardness and the attrition rate of the YSZ beads. Grain size, fractured surfaces, and yttrium distribution are analyzed by electronic microscopes. For standardization and a reliable comparison of the attrition rate of zirconia beads with different conditions, Zr content in milled ceramic powder is analyzed and calculated by X-ray Fluorescence Spectrometer(XRF) instead of directly measuring the weight change of milled YSZ beads. The beads with small grain sizes sintered at lower temperature exhibit a higher Vickers hardness and lower attrition rate. The attrition rate of 50 μm YSZ beads is measured and compared with the various materials properties of ceramic powders used for high-energy milling. The attrition rate of beads appears to be closely related to the Vickers hardness of ceramic materials used for milling, and demonstrates more than a 10 times higher attrition rate with Alumina(Hv ~1650) powder than BaTiO3 powder (Hv ~315).
4,000원
6.
2019.04 구독 인증기관 무료, 개인회원 유료
There are several manufacturing techniques for developing thermionic cathodes for vacuum ultraviolet(VUV) ionizers. The triple alkaline earth metal emitters(Ca-Sr-Ba) are formulated as efficient and reliable thermo-electron sources with a great many different compositions for the ionizing devices. We prepare two basic suspensions with different compositions: calcium, strontium and barium. After evaluating the electron-emitting performance for europium, gadolinium, and yttrium-based cathodes mixed with these suspensions, we selected the yttrium for its better performance. Next, another transition metal indium and a lanthanide metal neodymium salt is introduced to two base emitters. These final composite metal emitters are coated on the tungsten filament and then activated to the oxide cathodes by an intentionally programmed calcination process under an ultra-high vacuum(~10-6 torr). The performance of electron emission of the cathodes is characterized by their anode currents with respect to the addition of each element, In and Nd, and their concentration of cathodes. Compared to both the base cathodes, the electron emission performance of the cathodes containing indium and neodymium decreases. The anode current of the Nd cathode is more markedly degraded than that with In.
4,200원
7.
2019.04 구독 인증기관 무료, 개인회원 유료
Fabrication of soft magnetic composite powders for the Fe2O3-Ca system by mechanical alloying(MA) has been investigated at room temperature. It is found that soft magnetic composite powders in which CaO is dispersed in α-Fe matrix are obtained by MA of Fe2O3 with Ca for 5 hours. Changes in magnetization and coercivity also reflect the details of the solidstate reduction process of hematite by pure metal of Ca during MA. The saturation magnetization of MA powders increases with increasing MA time and reaches a maximum value of 65 emu/g after 7 hours of MA. The average grain size of α-Fe in MA powders, estimated by diffraction line-width, gradually decreases with increasing MA time and reaches 52 nm after 5 hours of MA. It can also be seen that the coercivity of the 5-hour MA sample is fairly high at 190 Oe, suggesting that the grain refinement of already-produced α-Fe tends to clearly occur during MA.
4,000원
8.
2019.04 구독 인증기관 무료, 개인회원 유료
Since the directly bonded interface between TiAl alloy and SCM440 includes lots of cracks and generated intermetallic compounds(IMCs) such as TiC, FeTi, and Fe2Ti, the interfacial strength can be significantly reduced. Therefore, in this study, Cu is selected as an insert metal to improve the lower tensile strength of the joint between TiAl alloy and SCM440 during friction welding. As a result, newly formed IMCs, such as Cu2TiAl, CuTiAl, and TiCu2, are found at the interface between TiAl alloy and Cu layer and the thickness of IMCs layers is found to vary with friction time. In addition, to determine the relationship between the thickness of the IMCs and the strength of the welded interfaces, a tensile test was performed using sub-size specimens obtained from the center to the peripheral region of the friction-welded interface. The results are discussed in terms of changes in the IMCs and the underlying deformation mechanism. Finally, it is found that the friction welding process needs to be idealized because IMCs generated between TiAl alloy and Cu act to not only increase the bonding strength but also form an easy path of fracture propagation.
4,000원
9.
2019.04 구독 인증기관 무료, 개인회원 유료
As a case study on aspect ratio behavior, Kaolin, zeolite, TiO2, pozzolan and diatomaceous earth minerals are investigated using wet milling with 0.3 pai media. The grinding process using small media of 0.3 pai is suitable for current work processing applications. Primary particles with average particle size distribution D50, ~6 μm are shifted to submicron size, D50 ~0.6 μm, after grinding. Grinding of particles is characterized by various size parameters such as sphericity as geometric shape, equivalent diameter, and average particle size distribution. Herein, we systematically provide an overview of factors affecting the primary particle size reduction. Energy consumption for grinding is determined using classical grinding laws, including Rittinger's and Kick's laws. Submicron size is obtained at maximum frictional shear stress. Alterations in properties of wettability, heat resistance, thermal conductivity, and adhesion increase with increasing particle surface area. In the comparison of the aspect ratio of the submicron powder, the air heat conductivity and the total heat release amount increase 68 % and 2 times, respectively.
4,000원
10.
2019.04 구독 인증기관 무료, 개인회원 유료
Oxide-dispersion-strengthened (ODS) alloy has been developed to increase the mechanical strength of metallic materials; such an improvement can be realized by distributing fine oxide particles within the material matrix. In this study, the ODS layer was formed in the surface region of Zr-based alloy tubes by laser beam treatment. Two kinds of Zr-based alloys with different alloying elements and microstructures were used: KNF-M (recrystallized) and HANA-6 (partial recrystallized). To form the ODS layer, Y2O3-coated tubes were scanned by a laser beam, which induced penetration of Y2O3 particles into the substrates. The thickness of the ODS layer varied from 20 to 55 μm depending on the laser beam conditions. A heat affected zone developed below the ODS layer; its thickness was larger in the KNF-M alloy than in the HANA-6 alloy. The ring tensile strengths of the KNF-M and HANA-6 alloy samples increased more than two times and 20–50%, respectively. This procedure was effective to increase the strength while maintaining the ductility in the case of the HANA-6 alloy samples; however, an abrupt brittle facture was observed in the KNF-M alloy samples. It is considered that the initial microstructure of the materials affects the formation of ODS and the mechanical behavior.
4,000원