간행물

한국재료학회지 KCI 등재 SCOPUS Korean Journal of Materials Research

권호리스트/논문검색
이 간행물 논문 검색

권호

제19권 제5호 (2009년 5월) 10

1.
2009.05 구독 인증기관 무료, 개인회원 유료
The electrocatalytic behavior of the PtCo catalyst supported on the multi-walled carbon nanotubes (MWNTs) has been evaluated and compared with commercial Pt/C catalyst in a polymer electrolyte membrane fuel cell(PEMFC). A PtCo/MWNTs electrocatalyst with a Pt:Co atomic ratio of 79:21 was synthesized and applied to a cathode of PEMFC. The structure and morphology of the synthesized PtCo/MWNTs electrocatalysts were characterized by X-ray diffraction and transmission electron microscopy. As a result of the X-ray studies, the crystal structure of a PtCo particle was determined to be a face-centered cubic(FCC) that was the same as the platinum structure. The particle size of PtCo in PtCo/MWNTs and Pt in Pt/C were 2.0 nm and 2.7 nm, respectively, which were calculated by Scherrer's formula from X-ray diffraction data. As a result we concluded that the specific surface activity of PtCo/MWNTs is superior to Pt/C's activity because of its smaller particle size. From the electrochemical impedance measurement, the membrane electrode assembly(MEA) fabricated with PtCo/MWNTs showed smaller anodic and cathodic activation losses than the MEA with Pt/C, although ohmic loss was the same as Pt/C. Finally, from the evaluation of cyclic voltammetry(CV), the unit cell using PtCo/MWNTs as the cathode electrocatalyst showed slightly higher fuel cell performance than the cell with a commercial Pt/C electrocatalyst.
4,000원
2.
2009.05 구독 인증기관 무료, 개인회원 유료
Simple and high efficiency green phosphorescent devices using an intermixed double host of 4, 4', 4"-tris(N-carbazolyl) triphenylamine [TCTA], 1, 3, 5-tris (N-phenylbenzimiazole-2-yl) benzene [TPBI], phosphorescent dye of tris(2-phenylpyridine)iridium(III) [Ir(ppy)3], and selective doping in the TPBI region were fabricated, and their electro luminescent characteristics were evaluated. In the device fabrication, layers of 70Å-TCTA/90Å-TCTA[0.5TPBI0.5/90Å-TPBI doped with Ir(ppy)3 of 8% and an undoped layer of 50Å-TPBI were successively deposited to form an emission region, and SFC137 [proprietary electron transporting material] with three different thicknesses of 300Å, 500Å, and 700Å were used as an electron transport layer. The device with 500Å-SFC137 showed the luminance of 48,300 cd/m2 at an applied voltage of 10 V, and a maximum current efficiency of 57 cd/A under a luminance of 230 cd/m2. The peak wavelength in the electroluminescent spectral and color coordinates on the Commission Internationale de I'Eclairage [CIE] chart were 512 nm and (0.31, 0.62), respectively.
4,000원
3.
2009.05 구독 인증기관 무료, 개인회원 유료
Changes in the surface morphology and light scattering of textured Al doped ZnO thin films on glasssubstrates prepared by rf magnetron sputtering were investigated. As-deposited ZnO:Al films show a hightransmittance of above 80% in the visible range and a low electrical resistivity of 4.5×10-4Ω·cm. The surfacemorphology of textured ZnO:Al films are closely dependent on the deposition parameters of heater temperature,working pressure, and etching time in the etching process. The optimized surface morphology with a cratershape is obtained at a heater temperature of 350oC, working pressure of 0.5 mtorr, and etching time of 45seconds. The optical properties of light transmittance, haze, and angular distribution function (ADF) aresignificantly affected by the resulting surface morphologies of textured films. The film surfaces, havinguniformly size-distributed craters, represent good light scattering properties of high haze and ADF values.Compared with commercial Asahi U (SnO2:F) substrates, the suitability of textured ZnO:Al films as frontelectrode material for amorphous silicon thin film solar cells is also estimated with respect to electrical andoptical properties.
4,000원
4.
2009.05 구독 인증기관 무료, 개인회원 유료
Mn-substituted BiFeO3(BFO) thin films were prepared by r.f. magnetron sputtering under an Ar/O2mixture of various deposition pressures at room temperature. The effects of the deposition pressure andannealing temperature on the crystallization and electrical properties of BFO films were investigated. X-raydiffraction patterns revealed that BFO films were crystallized for films annealed above 500oC. BFO filmsannealed at 550oC for 5 min in N2 atmosphere exhibited the crystallized perovskite phase. The (Fe+Mn)/Biratio decreased with an increase in the deposition pressure due to the difference of sputtering yield. The grainsize and surface roughness of films increased with an increase in the deposition pressure. The dielectricconstant of BFO films prepared at various conditions shows 127~187at 1kHz. The leakage current densityof BFO films annealed at 500oC was approximately two orders of magnitude lower than that of 550oC. Theleakage current density of the BFO films deposited at 10~30m Torr was about 5×10-6~3×10-2A/cm2 at 100kV/cm. Due to the high leakage current, saturated P-E curves were not obtained in BFO films. BFO film annealedat 500oC exhibited remnant polarization(2Pr) of 26.4µC/cm2 at 470kV/cm.
4,000원
5.
2009.05 구독 인증기관 무료, 개인회원 유료
In this study we investigated the effect of the multi-step texturing process on the electrical and optical properties of hydrogenated Al-doped zinc oxide (HAZO) thin films deposited by rf magnetron sputtering. AZO films on glass were prepared by changing the H2/(Ar+H2) ratio at a low temperature of 150˚C. The prepared HAZO films showed lower resistivity and higher carrier concentration and mobility than those of non-hydrogenated AZO films. After deposition, the surface of the HAZO films was multi-step textured in diluted HCl (0.5%) for the investigation of the change in the optical properties and the surface morphology due to etching. As a result, the HAZO film fabricated under the type III condition showed excellent optical properties with a haze value of 52.3%.
4,000원
6.
2009.05 구독 인증기관 무료, 개인회원 유료
The through-thickness variations of strain and microstructure during high-speed hot rolled 5052 aluminum alloy sheet were investigated. The specimens were rolled at temperature ranges from 410 to 560˚C at a rolling speed of 15 m/s without lubrication and quenched into water at an interval of 30 ms after rolling. The redundant shear strain induced by high friction between rolls and the aluminum sheet was increased largely beneath the surface at a rolling reduction above 50%. Dynamic recrystallization occurred in the surface regions of the specimen rolled under conditions of high temperatures or high rolling reductions.
4,000원
7.
2009.05 구독 인증기관 무료, 개인회원 유료
Lotus-type porous nickel with cylindrical pores was fabricated by unidirectional solidification under an Ar gas atmosphere using the thermal decomposition method of the compounds such as sodium hydroxide, calcium hydroxide, calcium carbonate, and titanium hydride. The decomposed gas does form the pores in liquid nickel, and then, the pores become the cylindrical pores during unidirectional solidification. The decomposed particles from the compounds do play a rule on nucleation sites of the pores. The behavior of pore growth was controlled by atmosphere pressure, which can be explained by Boyle's law. The porosity and pore size decreased with increasing Ar gas pressure when the pores contain hydrogen gas decomposed from calcium and sodium hydroxide and titanium hydride, ; however it they did not change when the pores contain containing carbon dioxide decomposed from calcium carbonate. These results indicate that nickel does not have the solubility of carbon dioxide. Lotus-type porous metals can be easily fabricated by the thermal decomposition method, which is superior to the conventional fabrication method used to pressurized gas atmospheres.
4,000원
8.
2009.05 구독 인증기관 무료, 개인회원 유료
The effect of the initial packing structure on the plasticity of amorphous alloys was investigated by tracing the structural evolution of the amorphous solid inside a shear band. According to the molecular dynamics simulations, the structural evolution of the amorphous solids inside the shear band was more abrupt in the alloy with a higher initial packing density. Such a difference in the structural evolution within the shear band observed from the amorphous alloys with different initial packing density is believed to cause different degrees of shear localization, providing an answer to the fundamental question of why amorphous alloys show different plasticity. We clarify the structural origin of the plasticity of bulk amorphous alloys by exploring the microstructural aspects in view of the structural disordering, disorder-induced softening, and shear localization using molecular dynamics simulations based on the recently developed MEAM (modified embedded atom method) potential.
4,000원
9.
2009.05 구독 인증기관 무료, 개인회원 유료
ZnO thin film was grown on a sapphire single crystal substrate by plasma assisted molecular beamepitaxy. In addition to near band edge (NBE) emissions, both blue and green luminescences are also observedtogether. The PL intensity of the blue luminescence (BL) range from 2.7 to 2.9eV increased as the amountof activated oxygen increased, but green luminescence (GL) was weakly observed at about 2.4eV without muchchange in intensity. This result is quite unlike previous studies in which BL and GL were regarded as thetransition between shallow donor levels such as oxygen vacancy and interstitial zinc. Based on the transitionlevel and formation energy of the ZnO intrinsic defects predicted through the first principle calculation, whichemploys density functional approximation (DFA) revised by local density approximation (LDA) and the LDA+Uapproach, the green and blue luminescence are nearly coincident with the transition from the conduction bandto zinc vacancies of V2-Zn and V-Zn, respectively.
4,000원
10.
2009.05 구독 인증기관 무료, 개인회원 유료
This article shows various factors that influence the thermal-cycling reliability of semiconductor devices utilizing the lead-on-chip (LOC) die attach technique. This work details how the modification of LOC package design as well as the back-grinding and dicing process of semiconductor wafers affect passivation reliability. This work shows that the design of an adhesion tape rather than a plastic package body can play a more important role in determining the passivation reliability. This is due to the fact that the thermal-expansion coefficient of the tape is larger than that of the plastic package body. Present tests also indicate that the ceramic fillers embedded in the plastic package body for mechanical strengthening are not helpful for the improvement of the passivation reliability. Even though the fillers can reduce the thermal-expansion of the plastic package body, microscopic examinations show that they can cause direct damage to the passivation layer. Furthermore, experimental results also illustrate that sawing-induced chipping resulting from the separation of a semiconductor wafer into individual devices might develop into passivation cracks during thermal-cycling. Thus, the proper design of the adhesion tape and the prevention of the sawing-induced chipping should be considered to enhance the passivation reliability in the semiconductor devices using the LOC die attach technique.
4,000원