The effect of Al content on the processing of reaction-bonded Al2O3 (RBAO) ceramics using 40v/o ~ 80v/o Al- Zn-Mg alloy powder was studied in order to improve traditional RBAO ceramic processes that use ~ 40v/o pure Al powder. The influence of high Al content in starting Al2O3-Al alloy powder mixtures on its particulate characteristics, reaction-bonding, microstructure, physical and mechanical properties was revealed. Starting Al2O3-Al alloy powder mixtures with 40v/o ~ 80v/o Al alloy powder were milled, reaction-bonded, post-sintered, and characterized. With an increasing Al alloy content, the milling efficiency of Al alloy powder was lowered, resulting in a larger particle size after milling. However, in spite of the larger particle size of Al alloy powder, the oxidation, i.e., reaction-bonding, of the Al alloy was successfully completed via solid and liquid state oxidation, in which the activation energy of the oxidation was nearly the same regardless of Al alloy content. After reaction-bonding and post-sintering at 1600 oC, RBAO ceramics from 80v/o Al alloy content showed a relative density of ~97% and a flexural strength of 251 MPa compared to ~ 96% and 353 MPa for RBAO ceramics from 40v/o Al alloy content, respectively. The lower flexural strength at 80v/o Al alloy content was due to the weak spinel phase that formed from Zn, Mg alloying elements in Al.
In-situ neutron diffraction has been employed to examine the effect of strain path on lattice strain evolution during monotonic and cyclic tension in an extruded Mg-8.5wt.%Al alloy. In the cyclic tension test, the maximum applied stress increased with cycle number. Lattice strain data were acquired for three grain orientations, characterized by the plane normal to the stress axis. The lattice strain in the hard {10.0} orientation, which is unfavorably oriented for both basal slip and {10.2} extension twinning, evolved linearly throughout both tests during loading and unloading. The {00.2} orientation exhibited significant relaxation associated with {10.2} extension twinning. Coupled with a linear lattice strain unloading behavior, this relaxation led to increasingly compressive residual strains in the {00.2} orientation with increasing cycle number. The {10.1} orientation is favorably oriented for basal slip, and thus showed a soft grain behavior. Microyielding occurred in the monotonic tension test and in all cycles of the cyclic test at an applied stress of ~50 MPa, indicating that strain hardening in this orientation was not completely stable from one cycle to the next. The lattice strain unloading behavior was linear in the {10.1} orientation, leading to a compressive residual strain after every cycle, which, however, did not increase systematically from one cycle to the next as in the {00.2} orientation.
High temperature plasma coating technology has been applied to recover damaged aluminum dies from wear by spraying pure aluminum and alumina powder. However, the coated mixed powder layer composed of aluminum and alumina often undergoes a detachment from the substrate, making the coated substrate die unable to maintain its expected life span. In this study, in order to increase the bonding strength between the substrate and the coating layer, a pure aluminum layer was applied as an intermediate bond layer. In order to prepare the specimen with variable bond coating conditions, the bond coat layers with a various gun speed from 10 cm/sec to 30 cm/sec were prepared with coating cycle variations ranging from three to nine cycles. The specimen with a bond coat layer coated with a gun speed of 20 cm/sec and three coating cycles exhibited ~13MPa of adhesion strength, while the specimen without a bond coat layer showed ~6 MPa of adhesion strength. The adhesion strength with a variation of bond coat layer thickness is discussed in terms of coating parameters.
Silicon oxynitride that can be deposited two times faster than general SiNx:H layer was applied to fabricate the passivation protection layer of atomic layer deposition (ALD) Al2O3. The protection layer is deposited by plasma-enhanced chemical vapor deposition to protect Al2O3 passivation layer from a high temperature metallization process for contact firing in screen-printed silicon solar cell. In this study, we studied passivation performance of ALD Al2O3 film as functions of process temperature and RF plasma effect in plasma-enhanced chemical vapor deposition system. Al2O3/SiON stacks coated at 400 oC showed higher lifetime values in the as-stacked state. In contrast, a high quality Al2O3/SiON stack was obtained with a plasma power of 400 W and a capping-deposition temperature of 200 oC after the firing process. The best lifetime was achieved with stack films fired at 850 oC. These results demonstrated the potential of the Al2O3/SiON passivated layer for crystalline silicon solar cells.
H2S is a flammable toxic gas that can be produced in plants, mines, and industries and is especially fatal to humanbody. In this study, CuO nanowire structure with high porosity was fabricated by deposition of copper on highly porous single-wall carbon nanotube (SWCNT) template followed by oxidation. The SWCNT template was formed on alumina substrates bythe arc-discharge method. The oxidation temperatures for Cu nanowires were varied from 400 to 800oC. The morphology andsensing properties of the CuO nanowire sensor were characterized by FESEM, Raman spectroscopy, XPS, XRD, and current-voltage examination. The H2S gas sensing properties were carried out at different operating temperatures using dry air as thecarrier gas. The CuO nanowire structure oxidized at 800oC showed the highest response at the lowest operating temperatureof150oC. The optimum operating temperature was shifted to higher temperature to 300oC as the oxidation temperature waslowered. The results were discussed based on the mechanisms of the reaction with ionosorbed oxygen and the CuS formationreaction on the surface.
The effect of precursor concentration on the structural, morphological, and optical properties of TiO2nano-flowers was investigated in this study. An increase in crystallite size was observed with an increase in the concentration of the precursor (titanium butoxide). The FE-SEM micrographs of the as-prepared samples show a three-dimensional flower-like morphology. The flowers consist of several nanorods coming out of a single core and have very sharp edges. Also, the variation in the aspect ratio of the nanostructure was observed with the concentration of the precursor. The photocatalytic properties of the samples show that the sample that has a high aspect ratio (AR~9) has a much better photocatalytic activity compared to the nano-crystal with a low aspect ratio (AR~6.1). It is believed that the excellent photocatalytic performance and short time synthesis of TiO2nano-flowers using the microwave hydrothermal method can have potential applications in the field of photocatalysis.
The implanting of metal products is performed with numerous surface treatments because of toxicity and adhesion. Recently, the surface modification of metal products has been actively studied by coating the surface of the TiC or TiN film. We prepared a Ti(10%)Ag Target which may be used in dental oral material by, using the AIP(arc ion plating) system TiAgN coating layer that was deposited on Ti g.23. The purpose of this study was to establish the optimal bias voltage conditions of the coated TiAgN layer formed by the AIP process. The TiAgN coatings were prepared with different bias voltage parameters (0V to −500V) to investigate the effect of bias voltage on their mechanical and chemical properties. The SEM(scanning electron microscope), EDS(energy dispersive X-ray spectrometer), XRD(X-ray diffraction), micro-hardness, and potentiodynamic polarization were measured and the surface characteristics of the TiAgN coating layers were evaluated. The TiAgN coating layer had different mechanical characteristics based on the bias voltage, which also showed differences in thickness and composition.
To fabricate porous SiC-Si composites for heating element applications, both SiC powders and Si powders were mixed and sintered together. The properties of the sintered SiC-Si body were investigated as a function of SiC particle size and/or Si particle contents from 10 wt% to 40 wt%, respectively. Porous SiC-Si composites were fabricated by Si bonded reaction at a sintering temperature of 1650 oC for 80 min. The microstructure and phase analysis of SiC-Si composites that depend on Si particle contents were characterized using scanning electron microscope and X-ray diffraction. The electrical resistivity of SiC-Si composites was also evaluated using a 4-point probe resistivity method. The electrical resistivity of the sintered SiC-Si body sharply decreased as the amount of Si addition increased. We found that the electrical resistivity of porous SiC-Si composites is closely related to the amount of Si added and at least 20 wt% Si are needed in order to apply the SiCSi composites to the heating element.