용탕단조법에 의해 제조된 Mg-9AI-2Zn 합금을 미세조직관찰, 미소경도측정, 인장시험 등을 행하여 시효거동과 기계적 성질을 조사하였다. 용탕에 가압을 한 결과 주조결함이 제거된 미세한 주조조직을 얻었으며 미세조직은 초정 α(Mg 고용체), 과포화고용체 α상 및 β(Mg17AI12)화합물의 3가지 상으로 구성되어 있었다. 160˚C및 200˚C에서 시효열처리한 결과 β석출물에 의한 피크 경도값이 나타났으며 피크경도에서의 석출물의 형태는 lamella 형태의 불연속 석출물이 대부분이었고 과시효에 따라 불연속석출물의 조대화와 함께 연속석출물의 분율이 증가하였다. 용탕단조방법에 의해 제조된 Mg-9AI-2Zn 합금의 인장특성은 인장강도 261.4MPa, 연산율 7.6%로서 상용 AZ 92 합금보다 인장강도 및 연신율에서 우수한 기계적 성질을 가졌는데 이는 Zn의 고용강화 및 용탕의 가압에 의한 효과였다.다.
에폭시 수지 계의 경화반응 속도를 증가시키고 기계적 물성을 향상시키기 위해 합성 pheny1 glycidy1 ether(PGE)-acetamide(AcAm)를 diglycidy1 ether of bispenol A(DGEBA)/4,4'-methylene dianiline(MDA)계에 도입하였다. PGE와 AcAm을 2:1의 몰비로 혼합한 후 180˚C에서 1시간 반응시켜서 PGE-AcAm을 합성하였다. 5phr의 PGE-AcAm이 첨가되었을 때 인장강도가 15% 개선되었으며, 그 이후로는 PGE-AcAm을 합성하였다. 5phr의 PGE-AcAm이 첨가되었을 때 인장강도가 15% 개선되었으며, 그 이후로는 PGE-AcAm의 함량에 관계없이 거의 비슷한 값을 나타내었다. 반면에유리전이 온도(Tg)와 충격강도는 PGE-AcAm의 함량이 증가함에 따라 감소하였다. 파단면은 PGE-AcAm이 첨가됨으로써 더 복잡한 형상을 나타내었다.
Melt-overflow 급냉응고장치를 이용하여 두께 약 300μm, 폭 10mm의 Mg-Zn합급 스트립을 연속적으로 제조하였다. 또한 알루미늄을 첨가하여, 첨가원소에 따른 결정립미세화와 기계적강도에 미치는 영향을 조사하였다. 스트립의 미세응고조직은 전자현미경(TEM, SEM)과 image analyzer를 이용하여 분석하였으며, 경도시험으로 기계적특성을 평가하였다. Mg-5wt%Zn합금 스트립의 경도는 결정립크기의 제곱근에 반비례하여 급냉응고에 의한 결정립미세화 효과로 같은 조성의 일반주조 합금보다 2배 이상의 높은 경도값을 가지며, 알루미늄을 첨가함으로서 2배 정도의 결정립미세화 효과를 얻어 경도가 더욱 증가하였다. 결정입계를 따라 생성된 금속간화합물은 마그네슘화합금의 입계부식을 방지하여 우수한 내식성을 갖는다. 따라서 적절한 합금설계와 급냉응고법을 적용시키면 마그네슘합금의 취약성을 보완하며 경량성의 장점을 최대한 활용할 수 있다.
TMS(tetramethysilane, Si(CH3)4)를 이용하여 RTCVD(rapid thermal chemical vapor deposition)장치에서 Si(111) 기판 위에 β-SiC(111)를 성장시켰다. 실험변수로는 반응온도, TMS유량, 반응시간, H2유량을 변화시켰으며, XRD, IR, SEM, RBS, TEM등을 이용하여 성장된 박막을 분석하였다. 성장된 박막은 crystallized Si, C또한 Si-H, C-H결합은 관찰할 수 없었으나 다결정이었다. TMS의 유량이 증가함에 따라, 성장온도가 감소함에 따라서 미려한 박막을 성장시킬 수 있었으며, 반응의 활성화에너지는 20kcal/molㆍK이었다.
Sol-gel법으로 제작한 여러 종류의 Zr/Ti비율을 갖고 있는 PZT박막의 전지적 특성과 신뢰성 특성을 상부 백금 전극을 sputtering으로 증착하고 Ar 기체로 반응성 이온 식각(RIE)방법으로 패턴을 형성한 후 열처리온도의 변화에 따라 조사하였다. Hysteresis loop특성을 되찾게 하였다. Zr/Ti 비율이 감소함에 따라 voltage shift가 증가하였으며 internal field가 없어지는 열처리 온도가 증가하였다. Zr/Ti비율이 감소함에 따라 초기 잔류 분극은 증가하였으나 switching 횟수가 증가됨에 따라 잔류 분극이 급속히 감소하였다.
본 연구에서는 비파괴적 분석 기법인 각분해 X-선 광전자 분광기(Angle-Resolved X-ray Photoelectron Spectros-copy)를 이용하여 GaAs 표면 자연 산화막의 깊이에 따른 화학적 결합 상태 및 조성 분석을 수행하였다. GaAs의 벽개면 및 Ar이온으로 식각된 면을 기준시료로 하여 각 원자의 광전자 강도(intensity)를 보정해주는 인자인 ASF(atomic sensitivity factor)의 최적값을 구하였다. 이륙각에 따라 발생되어지는 각 원소의 피이크 분해와 정확한 ASF의 보정을 통한 각 원소의 실험적인 결과를 이용하여 깊이 방향으로의 조성 분포 모델을 세웠으며, 이론적인 강도와의 상호비교로부터 표면 오염층의 구조는 표면으로부터 탄소층, Ga-oxide와 As-oxide로 이루어진 oxides층, As-As결합의 elemental As층 및 GaAs기판의 순으로 존재함을 알 수 있었다. 또한 GaAs 표면에 존재하는 오염층은 35.8±3.3 Å이었다. 또한 위 결과로부터 분석깊이 영역에서 원자수의 비로써 정의되는 의미로서의 실질조성을 구하였는데 단지 특정 이륙각에 따라 일반적인 ASF로 보정된 표면조성 결과는 표면 상태를 명확히 표현해주지 못함을 확인할 수 있었다.
Cu는 AI보다 비저항이 더 낮고, 일렉트로마이그레이션 내성이 더 강하기 때문에 AI을 대체하여 사용될 새로운 상부배선 재료로 널리 연구되고 있다. 그러나 Cu는 SiO2층을 통해 Si기판 속으로 확산하는 것과 같은 열적불안정성을 갖고 있으므로 Cu 배선을 위해서는 barrier금속을 함께 사용해야 한다. 지금까지 알려진 가장 우수한 재료는 TaSixNy이다. TasixNy는 900˚C에서 불량이 발생하는 것으로 보고된 바 있으나, 그것의 barrier특성과 관련하여 확인하고 또 새로 조사되어야 할 내용들이 많이 있다. 본 연구에서는 반응성 스퍼터링 테크닉을 사용하여 (100)Si 웨이퍼상에 TaSixNy막을 증착하고, Cu에 대한 barrier재료로서 반드시 갖추어야 할 열적 안정성을 면저항의측정, X선 회절 및 AES 깊이분석 등에 의하여 조사하였다. 스퍼터링 공정에서 N2/Ar기체의 유량비가 15%일때 열적 안정성이 가장 우수한 TaSixNy막이 얻어졌다. Ta와 TaN은 각각 600˚C와 650˚C에서 불량이 발생하는 반면, TaSixNy는 900˚C에서 불량이 발생하였다. TaSixNy의 불량기구는 다음과 같다:Cu는 TaSixNy막을 통과하여 TaSixNy/Si계면으로 이동한 다음 Si기판내의 Si원자들과 반응한다. 그 결과 TaSixNySi가 생성된다.
고분해능 전자현미경과 컴퓨터 이미지 시뮬레이션이 La이 첨가되고 또한 첨가되지 않은 Pb(Mg/ sub 1/3/Nb23/)O3고용체의 미세구조를 연구하기 위해서 사용되었다. 불규칙격자 영역의 격자 이미지는 정방정 형태와 유사 육방정 형태를 각각 보였다. 규칙격자 영역에서 Mg과 Nb의 비화학양론적인 규칙격자 구조 현상이<111>방향에 따라 관찰되었다. 실험 격자 이미지와 컴퓨터 시뮬레이션 이미지의 비교로부터, 규칙격자 구조를 가지는 영역의 장거리 규칙도는 0.2-0.7의 값을 가지고 있었고, 또한 규칙격자는 (NH4)3FeF6결정구조를 가지고 있었다. 작은 값의 장거리 규칙도를 가지는 규칙격자를 가지는 영역에서, 변형률 파형이 관찰되지 않았다. 이것은 대부분 두 양이온이 그들의 위치에 있기 때문에, 원자 변위가 없었기 때문이다.
RF-magnetron Sputtering Process를 이용하여 Pt/Ti/Si(100)기판위에 lanthanum-modified lead titanate 박막을 제작하였다. 기판온도와 증착시간이 증가함에 따라 증착율은 감소하였다. 기판온도가 증가함에 따라 fine grain들은 large grain으로 변화하였다. Perovskite구조는 기판온도 540˚C, gas pressure 30mtorr에서 나타나기 시작하였다. 본 실험에서 perovskite 박막제작에 대한 조건은 기판온도 580˚C, gas pressure 30mtorr였다. Pt/Ti/Si(100) 우선 배향된 박막을 얻었다. La양이 증가함에 따라 유전율, 항전계, 잔류분극량은 증가하였다. 중심주파수가 44.7MHz, 전파속도는 2680m/sec를 가지는 SAW filter 특성을 얻었다.
Li ion전지용 LiMn2O4분말을 졸-겔법과 고상반응법으로 제조하여 분말의 특성과 전지의 특성을 비교하였다. 졸-겔법에 의해 제조된 LiMn2O4분말은 고상반응법에 의해 제조된 분말보다 낮은 온도에서 합성이 가능하고, 균질하고 작은 입자들로 구성되었으며, Li stoichiometry가 우수하여 전지의 방전용량이 크나 양이온 혼합도가 높아 전지의 내부저항이 크게 나타났다. 졸-겔법은 높은 Li stoichiometry와 균질한 입자 크기를 갖는 LiMn2O4분말 제조에 적당한 것으로 생각되며, 전지의 내부저항 문제는 분말의 하소온도와 냉각속도의 조절에 의해 가능할 것으로 판단된다.