목분 충진제의 함량을 달리 하여 PE수지를 매트릭스로 하여 Wood Plastic Composites (WPC)를 제조하였다. 또한 매트릭스와 충진제간의 결합력을 증가시키기 위하여 커플링제를 사용하였으며, 보강재의 보강률과 커플링제 처리가 복합재의 기계적 물성에 미치는 영향과 계면현상을 관찰하였다. 커플링제로 MA를 사용하였을 경우에 tensile strength는 3wt%의 농도에서 25.91MPa의 최대값을 나타내었으며. MAOMS커플링제의 경우, 3wt%의 처리 농도에서 22.48MPa로 MA로 처리한 것보다 낮았다. 충격강도는 MA의 경우에는 3wt%일 때 44.38J/m의 최대값을 나타냈으며, MAOMS의 처리에서는 36.09J/m로 MA처리한 것보다 낮게 나타났다.
YBa2Cu3O7-y (123) 초전도체에서 은 입자의 미세분산을 얻고자 말릭산을 사용한 발화합성과 고상반응법으로 123와 123-Ag 복합 초전도분말을 제조하였다. 발화합성분말을 원료로 사용할 시 마이크론 미만의 미세한 123 분말과 은 분말의 복합체를 얻을 수 있었다. 원료로 사용된 산화은(Ag2O) 분말은 발화합성과정 중금속 은으로 환원되었다. 원료분말에 첨가된 금속 은에 의한 반응 물질간의 확산 촉진으로 123상이 단시간내에 생성되었고 입자성장도 촉진되었다. 발화합성법으로 제조한 시편은 기계적 혼합공정으로 제조한 시편에 비해 은 입자들은 미세하게 분산시킬 수 있어서 초전도체의 임계전류밀도가 향상되었다.
Rf 마그네트론 반응성 스퍼터링법으로 RuO2박막을 Si 및 Ru/Si 기판 위에 증착한 뒤 산소 분위기 (1atm)에서 열처리를 하여 RuO2박막의 열적 안정성 및 확산방지 특성을 연구하였다. RuO2박막은 산소 분위기 700˚C에서 10분까지 안정하여, 산소와 실리콘에 대한 우수한 확산방지 특성을 나타내었다 750˚C 열처리시, 우선 성장 방위에 관계없이 RuO2박막 표면 및 내부에서 휘발 반응이 일어남과 동시에 확산방지 특성은 저하되었다. 그러나 800˚C 열처리 시에는 750˚C 열처리와는 다른 미세구조를 나타내었다. 이러한 열처리 온도에 따른 휘발반응에는 RuO2의 표면 결함구조인 RuO3와 증착시 박막내 함유된 과잉산소에 의한 결함 구조가 영향을 주는 것으로 판단된다.
Zr합금에서 V, Sb의 함랗 변화가 Zr 합금의 부식 특성에 미치는 영향을 조사하기 위해 V, Sb함량을 각각 0.1, 0.2, 0.4wt.% 변화시킨 6종의 합금을 제조하고 360˚C 물 분위기에서 100일 동안 부식실험을 수행하였다. V이 0.2, 0.4wt% 첨가시편에서는 부식 속도의 천이 현상이 관찰되지 않았으나 0.1wt.% V 첨가 시편의 경우 10일 이후부터 무게증가량이 급격히 증가하는 부식 속도 가속 현상이 발생하였다. V 첨가량이 증가할수록 내식성이 증가하였으며 0.4wt.%V 첨가 합금이 가장 우수한 내식성을 보였다. Sb가 첨가된 삼원계 합금에서는 0.1, 0.4wt.%Sb 첨가 시편의 경우 초기부터 급격히 부식이 가속되는 현상이 발생하였으며 Sb 첨가량이 증가할수록 무게증가량이 감소하다가 다시 증가하여 0.2wt.% Sb 첨가에서 최소 무게증가량을 보였다. V, Sb함량이 증가할수록 석출물의 크기와 석출물의 부피 분율이 증가하는 경향을 보였으며 석출물의 크기가 0.11-0.13μm의 석출물 크기를 가질 때 가장 우수한 내식성을 보였다. 부식특성과 석출물 크기와의 관계로부터 적절한 크기의 석출물은 음극반응에서 전자의 전도를 제어하고 안정한 산화막 미세구조를 유지하는데 중요한 역할을 한다고 사료된다.
Ni계 경면합금인 Deloro 50의 마모거동을 15ksi와 30ksi 접촉응력하의 여러 마모조건에서 조사하였다. 상온대기중에서 Deloro 50는 15ksi 응력에서도 극심한 응착마모가 발생하는 매우 낮은 마모저항성을 보였는데 이는 fcc 결정구조를 갖는 Deloro 50 기지상의 경도와 가공경화율이 strain-induced 상변태를 이웅한 hcp 결정구조의 Stellite 6보다 낮기 때문으로 생각된다. 상온 수중에서 Deloro 50는 15ksi 응력에서 Stellite 6와 비슷한 마모저항성을 보였는데 이는 물이 미세요철간의 금속간 접촉을 억제하였기 때문으로 생각된다. 그러나, 30ksi의 높은 접촉응력에서는 상온 대기중길 같은 응착마모가 발생하는 것으로 보아, 30ksi의 높은 응력에서는 물의 응착마모 억제 효과가 없었기 때문으로 생각된다. 300˚C 대기중에서 Deloro 50는 30ksi의 높은 접촉응력에서도 Stellite 6보다 우수한 마모저항성을 보였는데 이는 고온에서 마모시 생성되는 복합산화물층이 효과적으로 금속간 접촉을 방해하여 응착마모를 억제하였기 때문으로 생각된다
평판디스플레이용 진공패널의 제작시 진공으로 유지된 패널을 구성하는 유리판이 받는 응력과 변위를 계산하였다. 유리판의 두께, 패널의 크기 및 실링폭의 크기를 변수로 하여 실제로 진공패널을 제작한 후 패널의 파괴양상과 변위를 측정하였다. 유리판의 파괴양상과 변형측정을 통하여 유리판에 걸리는 최대응력은 테두리부분에 걸리는 것을 확인하였다. 제작된 진공패널이 갖는 응력분포 및 변위의 분포는 패널을 진공실링할 때 사용한 실런트의 폭에 크게 의존하였다. 패널의 실링폭이 커질수록 모서리가 완전 고정된 조건으로 계산한 결과와 유사하였다. 두께가 3mm인 유리판을 사용해서 80×120textrmmm2</TEX> 크기의 패널을 제작할 때 실링폭이 20mm인 경우 측정된 변위는 57μm였으며, 이 값은 모서리가 완전히 고정된 조건으로 계산한 갈인 54μm와 비슷하였다.
본 연구에서는 Al-10wt%Ti-4wt%Fe 복합재료를 in-situ공정으로 제조할 수 있는 가능성 및 2 원계 Al-10wt%Ti 복합재료의 낮은 기계적 성질(탄성계수, 상온 고온강도, 내마모특성 등)을 PM SiC/2124 복합재료 수준 흑은 그 이상으로 향상시킬 수 있는 가능성을 조사하였다. 제조된 Al-10wt%Ti-4wt%Fe 합금은 불연속 SiC 강화상으로 보강된 Al-기지 복합재료(SiCw/2124)와 유사한 미세구조를 보여주었으며, 탄성계수 및 인장강도, 내마모성질 등의 기계적 특성이 2원계 Al-10%Ti 합금각 비교해 현저하게 향상되었음이 관찰되었다. 위의 결과는 초정 Al3Ti상 외에도 Fe 원소의 첨가를 통한 추가적인 AlxFe의 분산강화 효과에 기인한 것으로 해석된다.
MCFC(Molten Carbonate Fuel Cell) 작동온도인 650˚C에서 Ni 음극의 Creep 및 소결에 대한 저항성을 개선시키고자 Ni-W(WC) 복합재료를 기계적 합금법으로 제조하였다. 기계적 합금화한 분말의 XRD분석결과 밀링시간이 증가함에 따라 재료의 규칙적인 결정이 파괴되어 비정질화 되어가는 경향을 보였다. 소결은 1280˚C의 수소분위기에서 10시간 행하였다 소결된 시편의 dot-mapping 및 TEM 분석결과 Ni-W 계면에서의 2차상 관찰되지 않았으나 0.1μm 이하의 W이 Ni 기지내에 미세하고 균일하게 분포되어 있는 것으로 나타났다. 이와같이 미세하고 균일하게 분포되어 있는 W은 고용강화 및 분산강화 효과를 통하여 Ni음극의 기계적 특성을 향상시킬 것으로 기대된다.
본 연구에서는 졸-겔공정에 의해 금속 alkoxide용액을 이용하여 강유전성 PMN분말 및 박막을 제조하였다. PMN박막은 dip coating 방법으로 Pt가 피복된 Si 기판 위에 제조하였다. 열처리에 따른 gel 분말의 유기물 분해거동과 제조된 분말 및 박막의 열처리 온도변화에 따른 결정상 발달과정을 열분석, 적외선 및 Rarnan 분광분석과 X-선회절분석을 통하여 규명하였다 또한 과잉의 PbO와 MgO 첨가가 PMN박막의 Perovskite 결정상 생성에 미치는 영향을 고찰하였다. Pt가 피복된 Si기판 위에 5회 코팅으로 제조된 PMN박막의 820˚C에서 1분간 열처리 후 두께는 약 3000 이였다 PMN 박막 제조시, 15% 과잉의 PbO를 첨가하고 1분간 820˚C에서 열처리한 경우에 단일상의 Perovskite상을 얻을 수 있다. 고상반응에서와 같이 액상반응인 sol-gel공정에서도 과잉의 MgO (10mo1% ) 첨가가 Perovskite상의 생성을 증가시키는 것을 확인하였다 Pt가 피복된 Si기판 위에 제조된 PM N박막을 820˚C에서 1분간 열처리하였을 경우에 제조된 PM N박막의 유전상수 값과 손실계수는 10kHz주파수에서 각각 2200~2700 및 -0.33의 값을 나타내었다.
제1세대 니켈계 단결정 초합금인 CMSX 6를 사용하여 셀렉타법으로 진공 정밀주조하여 단결정을 제작하였다. 주형온도 약 1500˚C, 주입온도 약 1630˚C와 용탕 주입 직후 주형을 2.5mm/분 속도로 하강시켜 단결정을 성장시켰다. 단결정 주조조직에서 기지와 공정조직은 γ' 석출물(Ni3(Al, Ti)) 모양과 크기에 따라 각각 모두 두영역으로 구분되었으며, 공정조직의 Ti함랗은 기지보다 높았다. 즉, EPMA 및 CBED 분석 등으로 γ' 석출물을 분석한 결과, 기지내의 γ'은 크기가 0.5~0.7μm 이하이며 화학조성상 Ni3Al에 가까웠으며 격자구조도 Ll2를 나타내었다. 반면에 공정조직에 가까울수록 γ' 크기는 1.0μm보다 컸으며, 모양도 판상형의 거대한 모양으로 바뀌었다. 화학조성 또한 Ni3Ti에 가까웠으며 격자구조도 D O24를 나타내었으므로 수지상과 공정조직의 γ' 석출물은 화학조성 및 격자구조가 상이함을 알 수 있었다.
하부전극 없이 MgO 중간층을 갖는 고농도로 도핑된 Si(100) 기판(MgO/Si)위에 고주파 마그네트론 스퍼터링 방법으로 as-deposited PZT 박막을 증착한후 650˚C 온도에서 RTA 후속열처리를 실시하였다. 제작된 PZT 박막시료에 대해 MgO 중간층의 두께 및 후속열처리에 따른 결정학적, 전기적특성을 조사하였다. XRD 분석결과 MgO층이 전혀 증착되지 않은 bare Si 기판위에 증착된 PZT 시료는 pyrochlore 결정상만이 나타났으나 50 두께의 M gO층 위에 증착된 PZT/MgO/Si 박막시료는 전형적인 perovskite 결정구조를 나타내었다. SEM 및 AES 분석결과 PZT 박막두게는 약 7000 이었으며 비교적 매끄러운 계면형상을 보여 주었다. PZT 박막내의 각 성분원소가 깊이에 따라 비교적 균일한 분포를 나타내었다. 650˚C의 온도로 후속열처리된 PZT/MgO/Si 박막의 1KHz 주파수에서 유전상수 (εr )와 잔류분극 (2Pr)은 약 300 및 14μC/cm2의 값을 각각 나타내었으며 누설전류의 크기는 약 3.2μA/cm2이었다.
Si 기판을 실온과 600˚C로 유지하면서 동시 증착 방법으로 (Ti+2Si)를 증착한 후 N2 분위기에서 Ti를 증발시켜 TiN(300Å)/(Ti+2Si, 300Å)/Si(100) 구조의 시료를 제작한 다음 초고진공에서 in-situ로 열처리하여 양질의 TiN/TiSi2-bilayer를 형성하였다 열처리 온도가 700˚C 이상에서 (111) texture 구조를 가지면서 화학 양론적으로 Ti0.5N0.5인 박막과 C54-TiSi2박막이 형성되었다. TiN/C54-TiSi2/Si (100)구조의 계면은 응집 현상이 없이 평활하였으며, C54-TiSi2상은 에피택셜 성장되었다. TiN/TiSi2-이중구조막의 면저항은 열처리 온도에 따라 감소하였으며, 700˚C 이상의 열처리 온도에서는 면저항 값이 2.5Ω/cm2 였다.