금속동-흑연복합분말을 제조하기 위하여 염화동을 흑연주위에서 수소환원시킴으로써 흑연표면에 금속동을 석출시키는 새로운 방법으로 흑연-금속동 복합재료를 제조하고자 하였으며, 이를 위해 325 mesh이하의 KISH및 천연흑연을 모재로 하여 350-500˚C의 환원온도에서 염화동을 환원시키는 실험을 실시하였다. 금속동의 분산도는 환원온도가 낮을수록 양호한 것으로 나타났으며, 금속동의 분산도를 높이기 위해서는 가능한한 환원온도를 낮게하는 것이 유리한 것으로 나타났다.
극저탄소 알루미늄 킬드강내에 합금원소로 첨가된 Al, Ti, Nb, B등은 열처리 공정중 질화물이나 탄화물로 석출되어 강의 재결정집합조직을 변화시킴으로써 강판재의 디입드로잉 특성에 결정적인 영향을 미친다. 본 연구에서는 Ti및 Nb를 단독으로 또는 동시에 첨가한 데 이어, B, P, Si 및 Mn등을 추가로 첨가한 극저탄소 고강도 강판의 집삽조직에 미치는 질화물, 탄화물과 같은 미세 석출물의 영향을 TEM, SEM, 광학현미경분석에 의하여 조사하였다. Nb 및 Ti를 동시에 첨가한 강에서는 미세한 Nb2C 및 Ti2AIN가 주로 석출되는 반면, Nb를 단독으로 첨가한 강에서는 미세한 AIN 및 조대한 BN이 석출되고,Ti를 단독으로 첨가한 강에서는 비교적 조대한 Ti4N3및 조대한 N10N22/Ti68이 석출되는 것으로 관찰되었다. 또한 이러한 탄질화물들의 석출에 의하여 세 강이 서로 다른 결정입도를 나타내는데, 결정입도는 Nb 및 Ti동시첨가강과 Nb단독첨가강이 서로 비슷하고, Ti단독첨가강이 가장 큰 것으로 나타났다.
열경화성 에폭시 수지의 물성 중 담약성을 개선하기 위해 새로운 반응성첨가제 succinonitrile(SN)을 Diglycidy1 ether of bisphenol A(DGEBA(-4,4'-methylene dianiline(MDA)계에 도입하여 현재 널리 사용되고 있는 유리섬유 복합재료에 매트릭스로 사용될 경우에 있어서 파괴되는 거동을 미시적으로 고찰하였다. 그 결과 post debond friction 에너지가 파괴 거동을 주도하고 있으며, 다음으로 pull-out에너지 그리고 debonding 에너지 순으로 나타났다. 따라서 파괴 거동에 미치고 있는 중요한 요인은 섬유와 매트릭스 간의 경계면 전단 응력이 크게 좌우함을 알 수 있었으며, 이때 반응성 첨가제 SN은 전단응력을 떨어뜨리는 것으로 고찰되었다.
에폭시 수지로 bisphenol계diglycidy1 ether of bisphenol A(DGEBA)type에 아민계 경화제 4, 4'-methylene dianiline(MDA)를 사용한 계에 나타나는 취약점인 담약성을 개선하고자 반응성첨가제 succinonitrile(SN)을 첨가하였다. 이때 나타나는 화학적 구조의 변화로 야기되는 유리전이온도(Tg), 열분해온도(Td), 초기 열분해 온도(T-5%)를 SN의 함량비와 경화조건을 달리하여 고찰하였다. 이들 열적성질들은 SN의 함량이 증가함에 따라 유리전이온도와 열분해 온도는 감소하였고, 초기열분해에 일어나 5%의 중량감소가 나타나는 온도 또한 감소하였으나, 혼합액을 높은 온도에서 경화 시킬 경우 이들 열적성질들은 증가하였다.
In situ on-axis rf magnetron sputtering 방법으로 Y1Ba2Cu4 2Ox의 비화학 양론적인 타게트를 사용하여 Tc, zero/-88.2K, δTc,<1.5K의 고온초전도 박막을 제조하고, 활성이온식각법으로 이 박막을 patterning하여 그 특성을 조사하였다. 제조된 패턴은 깨끗한 경계면을 가지고 있음이 관찰되었으며, 패턴 폭이 5μm에서 2μm로 좁아짐에 따라 임계온도와 임계전류밀도의 특성저하가 나타났으나, 그 저하폭이 크지 않아 소자로서 응용하기에 충분한 특성을 가지고 있음을 확인하였다. 한편 RIE방법에 의하여 미크론 이하의 선폭 제조가능성을 확인하였다.
실리콘박막의 상부에 고상반응에 의해 형성된 TiSi2 박막의 응집 거동에 미치는 기판 실리콘의 영향을 조사했다. 폴리실리콘과 어몰퍼스실리콘을 증착상태 또는 어닐링한 상태엣 TiSi2를 형성시키고 900˚C열처리에 따른 TiSi2의 면저항값의 변화를 조사하고 XRD, SEM 및 TEM에 의한 실리콘의 조직관찰을 행했다. TiSi2응집은 어몰퍼스실리콘 위의 경우가 더욱 심했다. 폴리실리콘을 어닐링하면 TiSi2의 응집은 억제되며 고온에서 어닐링할수록 그 효과가 현저했다. 이는 폴리실리콘의 입도 변화보다는 증착시 존재하는 결함들이 열처리에 의해 감소된 때문이다. 폴리실리콘의 경우는 어닐링 전후에 상관없이 (110)집합조직인 주상정 조직을 갖고 있다. 어몰퍼스실리콘을 결정화시킨 경우는 (111)집합조직를 갖는 등축정 조직을 나타내었다. 실리콘의 표면에너지가 낮은 (111)면이TiSi2 막의 하부 폴리실리콘에 많이 존재할수록 응집은 촉진된다.
반도체 소자의 표면 보호용으로 사용되는 상압 CVD 방법에 의한 PSG(Phosposilicate glass)막 및 플라즈마 CVD방법에 의한 PE-SiN(Plasma enhanced CVD Si2N4)막의 항균열 특성을 알루미늄박막이 증착되어 있는 실리콘 기판위에서 조사했다. 450˚C에서 30분간으 열처리를 반복하면서 균열 발생 유무 및 그 형태를 조사하여 이러한 균열의 생성을 각 막의 막응력과 관련하여 검토하였다. 이들 박막에서의 균열 발생은 하부 조직인 알루미튬배선과의 열팽창계수차에 의한 것임을 알 수 있었다. PSG막 두께가 증가할수록 인장응력이 증가하여 항균열성이 저하되었다. PSG막의 P농도가 증가할수록 막응력은 압축응력쪽으로 이동하였고 균열 발생은 억제되었다. PE-SiN 막도 높은 압축응력을 갖게 함으로써 항균열성을 향상시킬 수 있었다. 본 실험의 결과로부터 반복 열처리시 균열 발생여부에 대한 실험식을 제시하였다.
Nd-Fe-B계에 Co와 Al을 첨가한 자석합금을 진공유도용해로에서 제조하여 이들 합금을 단롤법으로 melt-spun시켜 급냉리본을 얻었다. 제작된 급냉리본의 냉각속도에 따른 자기적 성질의 변화를 조사하였고, 최적의 급냉속도에서 제작된 리본을 파쇄하여 resin bond 자석을 제조하였으며, 이들 급냉리본 및 bond자석의 자기적 성질, 미세구조, 결정구조에 관하여 연구, 조사하였다. 이들 급냉리본의 자기적 성질은 급냉속도에 따라 크게 변하였으며 20m/sec전후에서 최적의 자기적 성질을 보였다. 이때의 급냉리본의 미세조직은 Nd-rich의 입계상이 미세한 Nd2Fe14B결정립을 둘러싼 cell 형의 구조였으며, 특히 Al이 2.1at%첨가된 리본시료에서는 iHc=15.5KOe, Br=7.8KG, (BH)max=8.5MGOe의 자기적 성질을 나타내었다. 최적의 급냉속도에서 제작된 리본을 polyamide resin과 2.5wt%의 비율로 혼합하여 상온에서 성형, 결합시켜 제작한 bond자석에서 보다 현저히 향상되었으며 유지시간이 8분인 경우 iHc=10.8KOe, Br=7.3KG, (BH)max=8.0MGOe의 값을 가졌다. 한편, 자구구조는 maze pattern이 주로 관찰되어 자화용이축인 C축이 배열되었으며 bond자석에서보다 hot-press 자석에서 자구폭이 보다 작았다.
본 연구에서는 분극성을 갖는 미세분말/유전유체 분산계내의 전기유변효과를 mechanism을 중심으로 고찰하였다. 전기유변효과를 일으키는 mechanism을 (1)입자표면전도(surface conductance) (2)입자내부전도(bulk conductance(3) 유도분극(induced polarization)으로 구분하여 설명하였다. 소수성(anhydrous-base)전기유변유체 내의 미세분말 입자간 상호인력을 예측할 수 있도록 유도분극 mechanism을 적용하여 수학적으로 모델화 함으로써 전기유변효과를 향상 시키기 위한 재료선정의 기초로 하였다. 전기유변유체의 미세입자로 이용될 수 있다고 여겨지는 ceramic, ferrite 및 polymer등 7가지 재료를 선정하여 계산한 결과 ceramic및 ferrite입자가 입자간 상호인력이 큰것으로 나타났다.
Plastic기 복합재료의 파괴거동에 미치는 원공크기오 판폭의 영향을 검토하기 위하여 단축인장시험을 행하였다. 점응력파손조건에서의 특성길이 do는 원공크기 및 판폭에 의존하며, 이를 기초로 파손강도를 예측하기 위한 수정 점응력 파손조건식을 제안하였다. 이 파손조건의 예측값은 실험값과 잘 일치하였다. 파손 강도는 원공선단의 손상비의 증가에 따라 증가하며, 이는 손상영역의 형성으로 인한 응력완화현상으로 설명되어 진다. 또한 불안정 파괴시의 최대균열길이 ac는 특성길이 do의 약 2배의 값을 나타낸다. 파괴인성에 대응하는 한계에너지해방율 Gc의 변화는 원공선단의 손상영역의 증가에 의한 응력완화가 주요한 원인이라고 할 수 있다.