Prior austenite grain size plays an important role in the production of high strength hot-rolled steel. This study investigated the effect of Ti and C contents on the precipitates and prior austenite grain size. Steel with no Ti solutes had prior austenite grain size of about 620 μm. The addition of Ti ~ 0.03 wt.% and 0.11 wt.% reduced the prior austenite grain size to 180 μm and 120 μm, respectively. The amount of Ti required to significantly decrease the prior austenite grain size was in the range of 0.03 wt.%. However, the amount of carbon required to significantly decrease the prior austenite grain size was not present from 0.04 wt.% to 0.12 wt.%. Oxides of Ti (Ti2O3) were observed as the Ti content increased to 0.03 wt.%. The specimen containing 0.11 wt.% of Ti exhibited the complex carbides of (Ti, Nb) C. The formation of Ti precipitates was critical to reduce the prior austenite grain size. Furthermore, the consistency of prior austenite grain size increased as the carbon and Ti contents increased. During the reheating process of hot-rolled steel, the most critical factor for controlling the prior austenite grain size seems to be the presence of Ti precipitates.
The electro-deposition of compound semiconductors has been attracting more attention because of its ability torapidly deposit nanostructured materials and thin films with controlled morphology, dimensions, and crystallinity in a cost-effective manner (1). In particular, low band-gap A2B3-type chalcogenides, such as Sb2Te3 and Bi2Te3, have been extensivelystudied because of their potential applications in thermoelectric power generator and cooler and phase change memory.Thermoelectric SbxTey films were potentiostatically electrodeposited in aqueous nitric acid electrolyte solutions containingdifferent ratios of TeO2 to Sb2O3. The stoichiometric SbxTey films were obtained at an applied voltage of −0.15V vs. SCE usinga solution consisting of 2.4mM TeO2, 0.8mM Sb2O3, 33mM tartaric acid, and 1M HNO3. The stoichiometric SbxTey filmshad the rhombohedral structure with a preferred orientation along the [015] direction. The films featured hole concentrationand mobility of 5.8×1018/cm3 and 54.8cm2/V·s, respectively. More negative applied potential yielded more Sb content in thedeposited SbxTey films. In addition, the hole concentration and mobility decreased with more negative deposition potential andfinally showed insulating property, possibly due to more defect formation. The Seebeck coefficient of as-deposited Sb2Te3 thinfilm deposited at −0.15V vs. SCE at room temperature was approximately 118µV/K at room temperature, which is similarto bulk counterparts.
It is known that the relative dielectric constant of insulating polyethylene matrix composites with conducting materials (such as carbon black and metal powder) increases as the conducting material content increases below the percolation threshold. Below the percolation threshold, dielectric properties show an ohmic behavior and their value is almost the same as that of the matrix. The change is very small, but its origin is not clear. In this paper, the dielectric properties of carbon black-filled polyethylene matrix composites are studied based on the effect medium approximation theory. Although there is a significant amount of literature on the calculation based on the theory of changing the parameters, an overall discussion taking into account the theory is required in order to explain the dielectric properties of the composites. Changes of dielectric properties and the temperature dependence of dielectric properties of the composites made of carbon particle and polyethylene below the percolation threshold for the volume fraction of carbon black have been discussed based on the theory. Above the percolation threshold, the composites are satisfied with the universal law of conductivity, whereas below the percolation threshold, they give the critical exponent of s = 1 for dielectric constant. The rate at which the percentages of both the dielectric constant and the dielectric loss factor for temperature increases with more volume fraction below the percolation threshold.
We have investigated the structural and electrical properties of Ga-doped ZnO (GZO) thin films deposited by anRF magnetron sputtering at various RF powers from 50 to 90W. All the GZO thin films are grown as a hexagonal wurtzitephase with highly c-axis preferred parameters. The structural and electrical properties are strongly related to the RF power. Thegrain size increases as the RF power increases since the columnar growth of GZO thin film is enhanced at an elevated RFpower. This result means that the crystallinity of GZO is improved as the RF power increases. The resistivity of GZO rapidlydecreases as the RF power increases up to 70W and saturates to 90W. In contrast, the electron concentration of GZO increasesas the RF power increases up to 70W and saturates to 90W. GZO thin film shows the lowest resistivity of 2.2×10−4Ωcmand the highest electron concentration of 1.7×1021cm−3 at 90W. The mobility of GZO increases as the RF power increasessince the grain boundary scattering decreases due to the reduced density of the grain boundary at a high RF power. Thetransmittance of GZO thin films in the visible range is above 90%. GZO is a feasible transparent electrode for application asa transparent electrode for thin film solar cells.
Ni 8 wt.%-doped tin oxide (SnO2) thick films were fabricated into gas sensors by the method of screen printing onto alumina substrates. The particle size of SnO2 was controlled by changing the ball-mill time between 0~120 h. The structural and morphological properties of these thick films were investigated using X-ray diffraction and scanning electron microscopy. The structural properties of SnO2 powders showed a tetragonal phase with (110) dominant orientation. The particle size of the SnO2:Ni powders after ball-mill of 120 h was about 0.05 μm. The gas sensitivity (S = Rg/Ra) to 5 ppm CH4 gas and CH3CH2CH3 gas was measured at room temperature by comparing the resistance in air (Ra) with that of the target gases (Rg). The sensitivity of the SnO2 gas sensors was enhanced by increasing the ball-mill time. There was an association between the sensitivity of both the CH4 gas and the CH3CH2CH3 gas and the particle size of the SnO2. SnO2 gas sensors prepared by 72 h ball-mill showed a sensitivity of about 13 to 5 ppm CH4 gas and CH3CH2CH3 gas. The response time of the SnO2:Ni gas sensors to the CH4 gas was about 20 seconds.
New organic light-emitting diodes with structure of indium-tin-oxide[ITO]/N,N'-diphenyl-N, N'-bis-[4-(phenyl-m-tolvlamino)-phenyl]-biphenyl-4,4'-diamine[DNTPD]/1,1-bis-(di-4-poly-aminophenyl) cyclohexane[TAPC]/bis(10-hydroxy-benzo(h)quinolinato)beryllium[Bebq2]/Bebq2:iridium(III)bis(2-phenylquinoline-N,C2')acetylacetonate[(pq)2Ir(acac)]/ET-137[electron transport material from SFC Co]/LiF/Al using the selective doping of 5%-(pq)2Ir(acac) in a single Bebq2 host in the two wavelength (green, orange) emitter formation were proposed and characterized. In the experiments, with a 300Å-thick undoped emitter of Bebq2, two kinds of devices with the doped emitter thicknesses of 20Å and 40Å in the Bebq2:(pq)2Ir(acac) were fabricated. The device with a 20Å-thick doped emitter is referred to as "D-1" and the device with a 4Å-thick doped emitter is referred to as "D-2". Under an applied voltage of 9V, the luminance of D-1 and D-2 were 7780 cd/m2 and 6620 cd/m2, respectively. The electroluminescent spectrum of each fabricated device showed peak emissions at the same two wavelengths: 508 nm and 596 nm. However, the relative intensity of 596 nm to 508 nm at those wavelengths was higher in the D-2 than in the D-1. The D-1 and D-2 devices showed maximum current efficiencies of 5.2 cd/A and 6.0 cd/A, and color coordinates of (0.31, 0.50) and (0.37, 0.48) on the Commission Internationale de I'Eclairage[CIE] chart, respectively.
Perovskite manganites such as RE1-xAxMnO3 (RE = rare earth, A = Ca, Sr, Ba) have been the subject of intense research in the last few years, ever since the discovery that these systems demonstrate colossal magnetoresistance (CMR). The CMR is usually explained with the double-exchange (DE) mechanism, and CMR materials have potential applications for magnetic switching, recording devices, and more. However, the intrinsic CMR effect is usually found under the conditions of a magnetic field of several Teslas and a narrow temperature range near the Curie temperature (Tc). This magnetic field and temperature range make practical applications impossible. Recently, another type of MR, called the low-field magnetoresistance(LFMR), has also been a research focus. This MR is typically found in polycrystalline half-metallic ferromagnets, and is associated with the spin-dependent charge transport across grain boundaries. Composites with compositions La0.7(Ca1-xSrx)0.3MnO3)]0.99/(BaTiO3)0.01 [(LCSMO)0.99/(BTO)0.01]were prepared with different Sr doping levels x by a standard ceramic technique, and their electrical transport and magnetoresistance (MR) properties were investigated. The structure and morphology of the composites were studied by X-ray diffraction (XRD) and scanning electronic microscopy (SEM). BTO peaks could not be found in the XRD pattern because the amount of BTO in the composites was too small. As the content of x decreased, the crystal structure changed from orthorhombic to rhombohedral. This change can be explained by the fact that the crystal structure of pure LCMO is orthorhombic and the crystal structure of pure LSMO is rhombohedral. The SEM results indicate that LCSMO and BTO coexist in the composites and BTO mostly segregates at the grain boundaries of LCSMO, which are in accordance with the results of the magnetic measurements. The resistivity of all the composites was measured in the range of 90-400K at 0T, 0.5T magnetic field. The result indicates that the MR of the composites increases systematically as the Ca concentration increases, although the transition temperature Tc shifts to a lower range.
Zircon has excellent thermal, chemical, and mechanical properties, but it is hard to make a dense sintered product because of dissociation during the sintering process. This study analyzes how the addition of SiO2 and Al2O3 affects the mechanical properties of sintered zircon, particularly in regards to reducing the thermal dissociation and improving the mechanical properties of ZrSiO4. Zircon specimens containing different amounts of SiO2 and Al2O3 were prepared and sintered to observe how the mechanical properties of ZrSiO4 changed according to the differing amount of SiO2 and Al2O3. The ZrSiO4 that was used for the starting material was ground by ball mill to an average particle size of 3 μm. The SiO2 and Al2O3 that was used for additives were ground to an average particle size of 3 μm and 0.5 μm, respectively. Adding SiO2 resulted in transformation in the liquid phase at high temperatures, which had little effect on suppressing the thermal dissociation but enhanced the mechanical properties of ZrSiO4. When Al2O3 was added, the mechanical properties of ZrSiO4 decreased due to the formation of pores and abnormal grains in the microstructure of the sintered zircon.
The effect of ferrous/ferric molar ratio on the formation of nano-sized magnetite particles was investigated by a co-precipitation method. Ferrous sulfate and ferric sulfate were used as iron sources and sodium hydroxide was used as a precipitant. In this experiment, the variables were the ferrous/ferric molar ratio (1.0, 1.25, 2.5 and 5.0) and the equivalent ratio (0.10, 0.25, 0.50, 0.75, 1.0, 2.0 and 3.0), while the reaction temperature (25˚C) and reaction time (30 min.) were fixed. Argon gas was flowed during the reactions to prevent the Fe2+ from oxidizing in the air. Single-phase magnetite was synthesized when the equivalent ratio was above 2.0 with the ferrous/ferric molar ratios. However, goethite and magnetite were synthesized when the equivalent ratio was 1.0. The crystallinity of magnetite increased as the equivalent ratio increased up to 3.0. The crystallite size (5.6 to 11.6 nm), median particle size (15.4 to 19.5 nm), and saturation magnetization (43 to 71 emu.g-1) changed depending on the ferrous/ferric molar ratio. The highest saturation magnetization (71 emu.g-1) was obtained when the equivalent ratio was 3.0 and the ferrous/ferric molar ratio was 2.5.
ZnO nanorods for gas sensors were prepared by a hydrothermal method. The ZnO gas sensors were fabricated on alumina substrates by a screen printing method. The gas-sensing properties of the ZnO nanorods were investigated for CH4 gas. The effects of growth time on the structural and morphological properties of the ZnO nanorods were investigated by X-ray diffraction and scanning electron microscope. The XRD patterns of the nanocrystallized ZnO nanorods showed a wurtzite structure with the (002) predominant orientation. The diameter and length of the ZnO nanorods increased in proportion to the growth time. The sensitivity of the ZnO sensors to 5 ppm CH4 gas was investigated for various growth times. The ZnO sensors exhibited good sensitivity and rapid response-recovery characteristics to CH4 gas, and both traits were dependent on the growth time. The highest sensitivity of the ZnO sensors to CH4 gas was observed with the growth time of 7 h. The response and recovery times were 13 s and 6 s, respectively.
Polysilazane and silazane-based precursor films were deposited on stacked TiN/Ti/TEOS/Si-substrate by spin-coating, then annealed at 150~400oC, integrated further to form the top electrode and pad, and finally characterized. Theprecursor solutions were composed of 20% perhydro-polysilazane (SiH2NH)n, and 20% hydropolymethyl silazane(SiHCH3NH)n in dibutyl ether. Annealing of the precursor films led to the compositional change of the two chemicals intosilicon (di)oxides, which was confirmed by Fourier transform infrared spectroscopy (FTIR) spectra. It is thought that thedifferent results that were obtained originated from the fact that the two precursors, despite having the same synthetic routeand annealing conditions, had different chemical properties. Electrical measurement indicated that under 0.6MV/cm, a largercapacitance of 2.776×10−11 F and a lower leakage current of 0.4pA were obtained from the polysilazane-based dielectric films,as compared to 9.457×10−12 F and 2.4pA from the silazane-based film, thus producing a higher dielectric constant of 5.48compared to 3.96. FTIR indicated that these superior electrical properties are directly correlated to the amount of Si-O bondsand the improved chemical bonding structures of the spin-on dielectric films, which were derived from a precursor without C.The chemical properties of the precursor films affected both the formation and the electrical properties of the spin-on dielectricfilm.