간행물

한국재료학회지 KCI 등재 SCOPUS Korean Journal of Materials Research

권호리스트/논문검색
이 간행물 논문 검색

권호

제33권 제8호 (2023년 8월) 4

1.
2023.08 구독 인증기관 무료, 개인회원 유료
There are many types of foam molding methods. The most commonly used methods are the pressure foaming method, in which foam resin is mixed with a foaming agent at high temperature and high pressure, and the normal pressure foaming method, which foams at high temperature without pressure. The polymer resins used for foaming have different viscosities. For foaming under normal pressure, they need to be designed and analyzed for optimal foaming conditions, to obtain resins with low melt-viscosity or a narrow optimal viscosity range. This study investigated how changes in viscosity, molding temperature, and cross-link foaming conditions affected the characteristics of the molded foam, prepared by blending rubber polymer with biodegradable resin. The morphologies of cross sections and the cell structures of the normal pressure foam were investigated by SEM analysis. Properties were also studied according to cross-link/foaming conditions and torque. Also, the correlation between foaming characteristics was studied by analyzing tensile strength and elongation, which are mechanical properties of foaming composites.
4,000원
2.
2023.08 구독 인증기관 무료, 개인회원 유료
The effects of Ni2+ substitution for Mg2+-sites on the microwave dielectric properties of (Mg1-xNix)(Ti0.95(Mg1/3 Ta2/3)0.05)O3 (0.01 ≤ x ≤ 0.05) (MNTMT) ceramics were investigated. MNTMT ceramics were prepared by conventional solid-state reaction. When the MgO / TiO2 ratio was changed from 1.00 to 1.02, MgTi2O5 was detected as a secondary phase along with the MgTiO3 main phase in the MNTMT specimens sintered at 1,400 °C for 4h. For the MNTMT specimens with MgO / TiO2 = 1.07 sintered at 1,400 °C for 4h, a single phase of MgTiO3 with an ilmenite structure was obtained from the entire range of compositions. The relative density of all the specimens sintered at 1,400 °C for 4h was higher than 95 %. The quality factor (Qf) of the sintered specimens depended strongly on the degree of covalency of the specimens, and the sintered specimens with x = 0.01 showed the maximum Qf value of 489,400 GHz. The dielectric constant (K) decreased with increasing Ni2+ content because Ni2+ had a lower dielectric polarizability (1.23Å3) than Mg2+ (1.32Å3). As Ni2+ content increased, the temperature coefficient of resonant frequency (TCF) improved, from -55.56 to -21.85 ppm/°C, due to the increase in tolerance factor (t) and the lower dielectric constant (K)
4,000원
3.
2023.08 구독 인증기관 무료, 개인회원 유료
3Y-TZP (3 mol% yttria-stabilized tetragonal zirconia polycrystals) ceramics have excellent mechanical properties including high fracture toughness, good abrasion resistance as well as chemical and biological stability. As a result, they are widely used in mechanical and medical components such as bearings, grinding balls, and hip implants. In addition, they provide excellent light transmittance, biocompatibility, and can match tooth color when used as a dental implant. Recently, given the materials’ resemblance to human teeth, these ceramics have emerged as an alternative to titanium implants. Since the introduction of CAD/CAM in the manufacture of ceramic implants, they’ve been increasingly used for prosthetic restoration where aesthetics and strength are required. In this study, to improve the surface roughness of zirconia implants, we modified the 3YTZP surface with a biocomposite of hydroxyapatite and forsterite using room temperature spray coating methods, and investigated the mixed effect of the two powders on the evolution of surface microstructure, i.e., coating thickness and roughness, and biological interaction during the in vitro test in SBF solution. We compared improvement in bioactivity by observing dissolution and re-precipitation on the specimen surface. From the results of in vitro testing in SBF solution, we confirmed improvement in the bioactivity of the 3Y-TZP substrate after surface modification with a biocomposite of hydroxyapatite and forsterite. Surface dissolution of the coating layer and the precipitation of new hydroxyapatite particles was observed on the modified surface, indicating the improvement in bioactivity of the zirconia substrate.
4,000원
4.
2023.08 구독 인증기관 무료, 개인회원 유료
Cesium lead iodide (CsPbI3) with a bandgap of ~1.7 eV is an attractive material for use as a wide-gap perovskite in tandem perovskite solar cells due to its single halide component, which is capable of inhibiting halide segregation. However, phase transition into a photo inactive δ-CsPbI3 at room temperature significantly hinders performance and stability. Thus, maintaining the photo-active phase is a key challenge because it determines the reliability of the tandem device. The dimethylammonium (DMA)-facilitated CsPbI3, widely used to fabricate CsPbI3, exhibits different phase transition behaviors than pure CsPbI3. Here, we experimentally investigated the phase behavior of DMA-facilitated CsPbI3 when exposed to external factors, such as heat and moisture. In DMA-facilitated CsPbI3 films, the phase transition involving degradation was observed to begin at a temperature of 150 °C and a relative humidity of 65 %, which is presumed to be related to the sublimation of DMA. Forming a closed system to inhibit the sublimation of DMA significantly improved the phase transition under the same conditions. These results indicate that management of DMA is a crucial factor in maintaining the photo-active phase and implies that when employing DMA designs are necessary to ensure phase stability in DMA-facilitated CsPbI3 devices.
4,000원