간행물

한국재료학회지 KCI 등재 SCOPUS Korean Journal of Materials Research

권호리스트/논문검색
이 간행물 논문 검색

권호

제18권 제12호 (2008년 12월) 11

1.
2008.12 구독 인증기관 무료, 개인회원 유료
In this paper, experimental studies of the regrinding of tungsten carbide (WC-Co) tools for high-speed machining were conducted. Regrinding and a subsequent evaluation test were carried out for a flat endmill tool with diameters of 10 mm and 3 mm using a CNC five-axis tool grinder and a CNC three-axis machining center. Tool wear on the two types of endmill tools increased as the cutting length increased, and the tool wear was not influenced by the regrinding state. In case of the micro endmill with a tool diameter of 3 mm, the effective regrinding time was determined for a flank wear threshold of 0.3 mm considering the tool life according to cutting length. The tool lives of the 10 mm and 3 mm endmill tools were increased by 80% and 72%, respectively. This conclusion proves the Feasibility of the recycling of tungsten carbide materials in the high-speed machining of high-hardened materials for industrial applications.
4,000원
2.
2008.12 구독 인증기관 무료, 개인회원 유료
ZnO/ZnS core/shell nanocrystals (~5-7 nm in diameter) with a size close to the quantum confinement regime were successfully synthesized using polyol and thermolysis. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) analyses reveal that they exist in a highly crystalline wurtzite structure. The ZnO/ZnS nanocrystals show significantly enhanced UV-light emission (~384 nm) due to effective surface passivation of the ZnO core, whereas the emission of green light (~550 nm) was almost negligible. They also showed slight photoluminescence (PL) red-shift, which is possibly due to further growth of the ZnO core and/or the extension of the electron wave function to the shell. The ZnO/ZnS core/shell nanocrystals demonstrate strong potential for use as low-cost UV-light emitting devices.
4,000원
3.
2008.12 구독 인증기관 무료, 개인회원 유료
Graphite for the nuclear reactor is used to the moderator, reflector and supporter in which fuel rod inside of nuclear reactor. Recently, there are many researches has been performed on the various characteristics of nuclear graphite, however most of them are restricted to the structural and the mechanical properties. Therefore we focused on the thermal property of nuclear graphite. This study investigated the thermal emissivity following the oxidation degree of nuclear graphite with IG-11 used as a sample. IG-11 was oxidized to 6% and 11% in air at 5 l/min at 600˚C. The porosity and thermal emissivity of the sample were measured using a mercury porosimeter and by an IR method, respectively. The thermal emissivity of an oxidized sample was measured at 100˚C, 200˚C, 300˚C, 400˚C and 500˚C. The porosity of the oxidized samples was found to increase as the oxidation degree increased. The thermal emissivity increased as the oxidation degree increased, and the thermal emissivity decreased as the measured temperature increased. It was confirmed that the thermal emissivity of oxidized IG-11 is correlated with the porosity of the sample.
4,000원
4.
2008.12 구독 인증기관 무료, 개인회원 유료
The emission of carbon dioxide from the burning of fossil fuels has been identified as a major contributor to green house emissions and subsequent global warming and climate changes. For these reasons, it is necessary to separate and recover CO2 gas. A new process based on gas hydrate crystallization is proposed for the CO2 separation/recovery of the gas mixture. In this study, gas hydrate from CO2/H2 gas mixtures was formed in a semi-batch stirred vessel at a constant pressure and temperature. This mixture is of interest to CO2 separation and recovery in Integrated Coal Gasification (IGCC) plants. The impact of tetrahydrofuran (THF) on hydrate formation from the CO2/H2 was observed. The addition of THF not only reduced the equilibrium formation conditions significantly but also helped ease the formation of hydrates. This study illustrates the concept and provides the basic operations of the separation/recovery of CO2 (pre-combustion capture) from a fuel gas (CO2/H2) mixture.
4,000원
5.
2008.12 구독 인증기관 무료, 개인회원 유료
The NO gas sensing properties of ZnO-carbon nanotube (ZnO-CNT) composites fabricated by the coaxial coating of single-walled CNTs with ZnO were investigated using pulsed laser deposition. Upon examination, the morphology and crystallinity of the ZnO-CNT composites showed that CNTs were uniformly coated with polycrystalline ZnO with a grain size as small as 5-10 nm. Gas sensing measurements clearly indicated a remarkable enhancement of the sensitivity of ZnO-CNT composites for NO gas compared to that of ZnO films while maintaining the strong sensing stability of the composites, properties that CNT-based sensing materials do not have. The enhanced gas sensing properties of the ZnO-CNT composites are attributed to an increase in the surface adsorption area of the ZnO layer via the coating by CNTs of a high surface-to-volume ratio structure. These results suggest that the ZnO-CNT composite is a promising template for novel solid-state semiconducting gas sensors.
4,000원
6.
2008.12 구독 인증기관 무료, 개인회원 유료
Ni-GDC (gadolinia-doped ceria) composite powders, the anode material for the application of solid oxide fuel cells, were prepared by a solution reduction method using hydrazine. The distribution of Ni particles in the composite powders was homogeneous. The Ni-GDC powders were sintered at 1400˚C for 2 h and then reduced at 800˚C for 24 h in 3% H2. The percolation limit of Ni of the sintered composite was 20 vol%, which was significantly lower than these values in the literature (30-35 vol%). The marked decrease of percolation limit is attributed to the small size of the Ni particles and the high degree of dispersion. The hydrazine method suggests a facile chemical route to prepare well-dispersed Ni-GDC composite powders.
3,000원
7.
2008.12 구독 인증기관 무료, 개인회원 유료
Vapor phase polymerization of a conductive polymer on a SiO2 surface can offer an easy and convenient means to depositing pure and conductive polymer thin films. However, the vapor phase deposition is generally associated with very poor adhesion as well as difficulty when patterning the polymer thin film onto an oxide dielectric substrate. For a significant improvement of the patternability and adhesion of Poly(3-hexylthiophene) (P3HT) thin film to a SiO2 surface, the substrate was pre-patterned with n-octadecyltrichlorosilane (OTS) molecules using a μ-contact printing method. The negative patterns were then backfilled with each of three amino-functionalized silane self-assembled monolayers (SAMs) of (3-aminopropyl) trimethoxysilane (APS), N-(2-aminoethyl)-aminopropyltrimethoxysilane (EDA), and (3- trimethoxysilylpropyl)diethylenetriamine (DET). The quality and electrical properties of the patterned P3HT thin films were investigated with optical and atomic force microscopy and a four-point probe. The results exhibited excellent selective deposition and significantly improved adhesion of P3HT films to a SiO2 surface. In addition, the conductivity of polymeric thin films was relatively high (~13.51 S/cm).
4,000원
8.
2008.12 구독 인증기관 무료, 개인회원 유료
Well-aligned Zinc oxide (ZnO) nanowires were synthesized on silicon substrates by a carbothermal evaporation method using a mixture of ZnO and graphite powder with Au thin film was used as a catalyst. The XRD results showed that as-prepared product is the hexagonal wurzite ZnO nanostructure and SEM images demonstrated that ZnO nanowires had been grown along the [0001] direction with hexagonal cross section. As-grown ZnO nanowires were coated with glucose oxidase (GOx) for glucose sensing. Glucose converted into gluconic acid by reaction with GOx and two electrons are generated. They transfer into ZnO nanowires due to the electric force between electrons and the positively charged ZnO nanostructures in PBS. Photoluminescence (PL) spectroscopy was employed for investigating the movements of electrons, and the peak PL intensity increased with the glucose concentration and became saturated when the glucose concentration is above 10 mM. These results demonstrate that ZnO nanostructures have potential applications in biosensors.
3,000원
9.
2008.12 구독 인증기관 무료, 개인회원 유료
Calcia (CaO) stabilized cubic-HfO2 is studied by density functional theory (DFT) with generalized gradient approximation (GGA). When a Ca atom is substituted for a Hf atom, an oxygen vacancy is produced to satisfy the charge neutrality. The lattice parameter of a 2×2×2 cubic HfO2 supercell then increases by 0.02 Å. The oxygen atoms closest to the oxygen vacancy are attracted to the vacancy as the vacancy is positive compared to the oxygen ion. When the oxygen vacancy is located at the site closest to the Ca atom, the total energy of HfO2 reaches its minimum. The energy barriers for the migration of the oxygen vacancy were calculated. The energy barriers between the first and the second nearest sites, the second and the third nearest sites, and the third and fourth nearest sites are 0.2, 0.5, and 0.24 eV, respectively. The oxygen vacancies at the third and fourth nearest sites relative to the Ca atom represent the oxygen vacancies in undoped HfO2. Therefore, the energy barrier for oxygen migration in the HfO2 gate dielectric is 0.24 eV, which can explain the origin of gate dielectric leakage.
4,000원
10.
2008.12 구독 인증기관 무료, 개인회원 유료
This study investigates Bi2O3-B2O3-BaO-ZnO glass with variations of the Co3O4 content (0.25,0.5,1,and 2wt%) and the interaction between transparent dielectric and Ag electrodes heat-treated at 500-560oC for30min. The glass transition temperature, softening temperature and thermal expansion coefficient were432oC, 460oC and 81.4×10-7/oC, respectively. The transmittance of 0.25wt% Co3O4 to which dielectric wasadded was highest and was decreased due to coloration with the addition of more than 0.25wt%. However,without Co3O4, the transmittance of the transparent layer was decreased due to the formation of Ba5Bi3;however, the occurrence of the crystal phase decreased as a result of the addition of Co3O4. The amount ofCo2+ ions increased as the Co3O4 increased. With a maximum of Co3+ ions, the highest transmittance wasobserved.
4,000원
11.
2008.12 구독 인증기관 무료, 개인회원 유료
For development of a human body model for electric shock, electroconductive paints with carbon black as a filler material were developed. The characteristics of the volume resistivities of thin films fabricated using the electroconductive paints were investigated as a function of the particle sizes and content of carbon black. With a carbon black particle size over 80 μm, agglomeration of carbon black powders was observed. The volume resistivity of the particles increased as the porosity increased and as the amount of carbon black decreased due to the agglomeration of carbon black powders. With a particle size of 4 μm and 20 μm, agglomeration of carbon black powders was not observed and their porosities were measured as 0.86% and 1.12% with volume resistivities of 20 Ω·cm and 80 Ω·cm respectively. A carbon black particle size of less than 20 μm is considered to be suitable as a type of electric-shock electroconductive paint for a human body model.
4,000원