Zinc oxide as an optoelectronic device material was studied to utilize its wide band gap of 3.37 eV and high exciton biding energy of 60 meV. Using anti-site nitrogen to generate p-type zinc oxide has shown a deep acceptor level and low solubility. To increase the nitrogen solubility in zinc oxide, group 13 elements (aluminum, gallium, and indium) was co-added to nitrogen. The effect of aluminum on nitrogen solubility in a 3×3×2 zinc oxide super cell containing 72 atoms was investigated using density functional theory with hybrid functionals of Heyd, Scuseria, and Ernzerhof (HSE). Aluminum and nitrogen were substituted for zinc and oxygen sites in the super cell, respectively. The band gap of the undoped super cell was calculated to be 3.36 eV from the density of states, and was in good agreement with the experimentally obtained value. Formation energies of a nitrogen molecule and nitric oxide in the zinc oxide super cell in zinc-rich conditions were lower than those in oxygen-rich conditions. When the number of nitrogen molecules near the aluminum increased from one to four in the super cell, their formation energies decreased to approach the valence band maximum to some degree. However, the acceptor level of nitrogen in zinc oxide with the co-incorporation of aluminum was still deep.
A3-2x/3Al1-zInzO4F: Eux3+ (A=Ca, Sr, Ba, x=-0.15, z=0, 0.1) oxyfluoride phosphors were simply prepared by thesolid-state method at 1050oC in air. The phosphors had the bright red photoluminescence (PL) spectra of an A3-2x/3Al1-zInzO4Ffor Eu3+ activator. X-ray diffraction (XRD) patterns of the obtained red phosphors were exhibited for indexing peak positionsand calculating unit-cell parameters. Dynamic excitation and emission spectra of Eu3+ activated red oxyfluoride phosphors wereclearly monitored. Red and blue shifts gradually occurred in the emission spectra of Eu3+ activated A3AlO4F oxyfluoridephosphors when Sr2+ by Ca2+ and Ba2+ ions were substituted, respectively. The concentration quenching as a function of Eu3+contents in A3-2x/3AlO4F:Eu3+ (A=Ca, Sr, Ba) was measured. The interesting behaviors of defect-induced A3-2x/3Al1-zInzO4-αF1-δphosphors with Eu3+ activator are discussed based on PL spectra and CIE coordinates. Substituting In3+ into the Al3+ positionin the A3-2x/3AlO4F:Eu3+ oxyfluorides resulted in the relative intensity of the red emitted phosphors noticeably increasing byseven times.
In this paper, the effects of conventional and newly developed elastomer modified underfill materials on the mechanical shock reliability of BGA board assembly were studied for application in mobile electronics. The mechanical shock reliability was evaluated through a three point dynamic bending test proposed by Motorola. The thermal properties of the underfills were measured by a DSC machine. Through the DSC results, the curing condition of the underfills was selected. Two types of underfills showed similar curing behavior. During the dynamic bending reliability test, the strain of the PCB was step increased from 0.2% to 1.5% until the failure circuit was detected at a 50 kHz sampling rate. The dynamic bending reliability of BGA board assembly using elastomer modified underfill was found to be superior to that of conventional underfill. From mechanical and microstructure analyses, the disturbance of crack propagation by the presence of submicron elastomer particles was considered to be mainly responsible for that result rather than the shear strength or elastic modulus of underfill joint.
An ultrafine grained complex aluminum alloy was fabricated by an accumulative roll-bonding (ARB) process using dissimilar aluminum alloys of AA1050 and AA5052 and subsequently annealed. A two-layer stack ARB process was performed up to six cycles without lubricant at an ambient temperature. In the ARB process, the dissimilar aluminum alloys, AA1050 and AA5052, with the same dimensions were stacked on each other after surface treatment, rolled to the thickness reduction of 50%, and then cut in half length by a shearing machine. The same procedure was repeated up to six cycles. A sound complex aluminum alloy sheet was fabricated by the ARB process, and then subsequently annealed for 0.5h at various temperatures ranging from 100 to 350˚C. The tensile strength decreased largely with an increasing annealing temperature, especially at temperatures of 150 to 250˚C. However, above 250˚C it hardly decreased even when the annealing temperature was increased. On the other hand, the total elongation increased greatly above 250˚C. The hardness exhibited inhomogeneous distribution in the thickness direction of the specimens annealed at relatively low temperatures, however it had a homogeneous distribution in specimens annealed at high temperatures.
1-D ZnO nanowires have been attractive for their peculiar properties and easy growth at relatively low temperature. The length, diameter, and density of ZnO nanowires were determined by the several synthetic parameters, such as PEI concentration, growth time, temperature, and zinc salt concentration. The ZnO nanowires were grown on the<001> oriented seed layer using the hydrothermal process with zinc nitrate and HMTA (hexamethylenetetramine) and their structure and optical properties were characterized. The morphology, length and diameter of the nanowires were strongly affected by the relative and/or absolute concentration of Zn2+ and OH-1 and the hydrothermal temperature. When the concentrations of the zinc nitrate HMTA were the same as 0.015 M, the length and diameter of the nanowires were 1.97μm and 0.07μm, respectively, and the aspect ratio was 28.1 with the preferred orientation along the<001> direction. XRD and TEM results showed a high crystallinity of the ZnO nanowires. Optical measurement revealed that ZnO nanowires emitted intensive stimulated UV at 376 nm without showing visible emission related to oxygen defects.
The a-Si:H/c-Si hetero-junction (HJ) solar cells have a variety of advantages in efficiency and fabrication processes. It has already demonstrated about 23% in R&D scale and more than 20% in commercial production. In order to further reduce the fabrication cost of HJ solar cells, fabrication processes should be simplified more than conventional methods which accompany separate processes of front and rear sides of the cells. In this study, we propose a simultaneous deposition of intrinsic thin a-Si:H layers on both sides of a wafer by dual hot wire CVD (HWVCD). In this system, wafers are located between tantalum wires, and a-Si:H layers are simultaneously deposited on both sides of the wafer. By using this scheme, we can reduce the process steps and time and improve the efficiency of HJ solar cells by removing surface contamination of the wafers. We achieved about 16% efficiency in HJ solar cells incorporating intrinsic a-Si:H buffers by dual HWCVD and p/n layers by PECVD.
With an increased production of Printed Circuit Boards (PCBs) in electronic equipment, the consumption of solder alloys is growing globally. Recently, increasing importance of recycling solder scrap has been recognized. Generally, solder scrap contains many impurities such as plastics and other metals. Hazardous components must be eliminated for recycling solder scrap. The present work studied pretreatment for reuse of solder scrap alloys. An experiment was conducted to enhance the cleanliness of solder scrap melt and eliminate impurities, especially lead. Physical separation with sieving and magnetic force was made along with pyrometallurgical methods. A small decrease in lead concentration was found by high temperature treatment of solder scrap melt. The impurities were removed by filtration of the solder scrap melt, which resulted in improvement of the melt cleanliness. A very low concentration of lead was achieved by a zone melting treatment with repeated passage. This study reports on a pretreatment process for the reuse of solder scrap that is lead free.
One of the trace constituents included in cement clinker, chromium, has become prominent and highly noticed lately as a social issue both inside and outside of this country because it affects the human body negatively. The purpose of the present study was to investigate leaching properties of water-soluble hexavalent chromium by different manufacturing conditions of cement clinker. Raw materials were prepared to add different SiO2, Al2O3 and Fe2O3 sources. After the raw materials, such as limestone, sand and clay, iron ore was pulverized and mixed, and the raw meal was burnt at 1450˚C in a furnace with an oxidizing atmosphere. Leaching of soluble hexavalent chromium showed a tendency to decrease with an increasing LSF and IM. However, leaching of soluble hexavalent chromium increased with an increasing S.M. Alkali contents of iron source minerals is closely related to the leaching properties of soluble hexavalent chromium. Green sludge has the highest content of alkali added; leaching of water-soluble hexavalent chromium was mostly high. In order to reduce the water-soluble hexavalent chromium in cement, reducing the alkali content in raw materials is important.
The goal of this investigation was to produce a zirconia-family black ceramics that has enhanced functionality andreliability. Color zirconia ceramics have been produced by adding pigments. Pigments cause structural defects within zirconiaand result in a drop in physical properties. Using environmentally friendly rice husk, we produced a black zirconia that is freeof structural defects. In optimal firing conditions for black zirconia the calcining temperatures of the molding product arechanged from 400oC to 1200oC, and the firing temperatures are changed from 1400oC to 1600oC. Color of testing the specimenswas analyzed using Ultraviolet (UV) spectroscopy. Scanning Electron Microscope (SEM), EDAX (EDX), and Fourier transforminfrared spectroscopy (FT-IR) analyses were carried out in order to examine impregnation properties and crystal phases.Universial Test Machine (UTM) was used to measure the flexual strength as well as the compressive strength. Fromexperimental results, it was found that in optimal firing conditions the sample was calcined from 1000oC to 1500oC. Commissioninternationalde I’Edairage (CIE) values of manufactured black zirconia color were L*=29.73, a*=0.23, b*=−2.68. Thebending strength was 918 MPa and the compressive strength was 2676 MPa. These strength values are similar to typicalstrength values of zirconia, which confirms that carbon impregnation did not influence physical properties.
In this study, nano-sized tin oxide powder with an average particle size of below 50 nm is prepared by the spray pyrolysis process. The influence of air pressure on the properties of the generated powder is examined. Along with the rise of air pressure from 0.1kg/cm2 to 3kg/cm2, the average size of the droplet-shaped particles decreases, while the particle size distribution becomes more regular. When the air pressure increases from 0.1kg/cm2 to 1kg/cm2, the average size of the dropletshaped particles, which is around 30-50 nm, shows hardly any change. When the air pressure increases up to 3kg/cm2, the average size of the droplet-shaped particles decreases to 30 nm. For the independent generated particles, when the air pressure is at 0.1kg/cm2, the average particle size is approximately 100 nm; when the air pressure increases up to 0.5kg/m2, the average particle size becomes more than 100 nm, and the surface structure becomes more compact; when the air pressure increases up to 1kg/cm2, the surface structure is almost the same as in the case of 0.5kg/cm2, and the average particle size is around 80- 100 nm; when the air pressure increases up to 3kg/cm2, the surface structure becomes incompact compared to the cases of other air pressures, and the average particle size is around 80-100 nm. Along with the rise of air pressure from 0.1kg/cm2 to 0.5kg/cm2, the XRD peak intensity slightly decreases, and the specific surface area increases. When the air pressure increases up to 1kg/cm2 and 3kg/cm2, the XRD peak intensity increases, while the specific surface area also increases.
Two-dimensional (2D) nano patterns including a two-dimensional Bravais lattice were fabricated by laser interference lithography using a two step exposure process. After the first exposure, the substrate itself was rotated by a certain angle, 90˚ for a square or rectangular lattice, 75˚ for an oblique lattice, and 60˚ for a hexagonal lattice, and the 90˚ and laser incident angle changed for rectangular and the 45˚ and laser incident angle changed for a centered rectangular; we then carried out a second exposure process to form 2D bravais lattices. The band structure of five different 2D nano patterns was simulated by a beam propagation program. The presence of the band-gap effect was shown in an oblique and hexagonal structure. The oblique latticed ZnO nano-photonic crystal array had a pseudo-bandgap at a frequency of 0.337-0.375, 0.575-0.596 and 0.858-0.870. The hexagonal latticed ZnO nano-crystallite array had a pseudo-bandgap at a frequency of 0.335-0.384 and 0.585-0.645. The ZnO nano structure with an oblique and hexagonal structure was grown through the patterned opening window area by a hydrothermal method. The morphology of 2D nano patterns and ZnO nano structures were investigated by atomic force microscopy and scanning electron microscopy. The diameter of the opening window was approximately 250 nm. The height and width of ZnO nano-photonic crystals were 380 nm and 250 nm, respectively.
The electrochromic properties of tungsten oxide films grown by RF sputtering were investigated. Among the sputter parameters, first the Ar:O2 ratios were controlled with division into only an O2 environment, 1:1 and 4:1. The structure of each film prepared by these conditions was studied by X-ray diffraction, X-ray photoelectron spectroscopy and Rutherford backscattering spectroscopy. The sputter-deposited tungsten oxide films had an amorphous structure regardless of the Ar:O2 ratios. The chemical compositions, however, were different from each other. The stoichiometric structure and low-density film was obtained at higher O2 contents. Electrochemical tests were performed by cyclic voltammetry and chronoamperometry at 0.05 M H2SO4 solutions. The current density and charge ratio was estimated during the continuous potential and pulse potential cycling at -0.5 V and 1.8 V, respectively. The film grown in a higher oxygen environment had a higher current density and a reversible charge reaction during intercalation and deintercalation. The in-situ transmittance tests were performed by He-Ne laser (633 nm). At higher oxygen contents, a big transmittance difference was observed but the response speed was too slow. This was likely caused by higher film resistivity. Furthermore, the effect of sputtering pressure was also investigated. The structure and surface morphology of each film was observed by X-ray diffraction and scanning electron microscopy. A rough surface was observed at higher sputtering pressure, and this affected the higher transmittance difference and coloration efficiency.