In this study, a micro gas sensor for NOx was fabricated using a microelectromechanical system (MEMS) technology and sol-gel process. The membrane and micro heater of the sensor platform were fabricated by a standard MEMS and CMOS technology with minor changes. The sensing electrode and micro heater were designed to have a co-planar structure with a Pt thin film layer. The size of the gas sensor device was about 2mm×2mm. Indium oxide as a sensing material for the NOx gas was synthesized by a sol-gel process. The particle size of synthesized In2O3 was identified as about 50 nm by field emission scanning electron microscopy (FE-SEM). The maximum gas sensitivity of indium oxide, as measured in terms of the relative resistance (Rs=Rgas/Rair), occurred at 300˚C with a value of 8.0 at 1 ppm NO2 gas. The response and recovery times were within 60 seconds and 2 min, respectively. The sensing properties of the NO2 gas showed good linear behavior with an increase of gas concentration. This study confirms that a MEMS-based gas sensor is a potential candidate as an automobile gas sensor with many advantages: small dimension, high sensitivity, short response time and low power consumption.
The effect of a sputter deposition sequence of Cu, Zn, and Sn metal layers on the properties of Cu2ZnSnS4 (CZTS) was systematically studied for solar cell applications. The set of Cu/Sn/Zn/Cu multi metal films was deposited on a Mo/SiO2/Si wafer using dc sputtering. CZTS films were prepared through a sulfurization process of the Cu/Sn/Zn/Cu metal layers at 500˚C in a H2S gas environment. H2S (0.1%) gas of 200 standard cubic centimeters per minute was supplied in the cold-wall sulfurization reactor. The metal film prepared by one-cycle deposition of Cu(360 nm)/Sn(400 nm)/Zn(400 nm)/Cu(440 nm) had a relatively rough surface due to a well-developed columnar structure growth. A dense and smooth metal surface was achieved for two- or three-cycle deposition of Cu/Sn/Zn/Cu, in which each metal layer thickness was decreased to 200 nm. Moreover, the three-cycle deposition sample showed the best CZTS kesterite structures after 5 hr sulfurization treatment. The two- and three-cycle Cu/Sn/Zn/Cu samples showed high-efficient photoluminescence (PL) spectra after a 3 hr sulfurization treatment, wheres the one-cycle sample yielded poor PL efficiency. The PL spectra of the three-cycle sample showed a broad peak in the range of 700-1000 nm, peaked at 870 nm (1.425 eV). This result is in good agreement with the reported bandgap energy of CZTS.
GdBa2Cu3O7-y(Gd123) powders were synthesized by the solid-state reaction method using Gd2O3 (99.9% purity), BaCO3 (99.75%) and CuO (99.9%) powders. The synthesized Gd123 powder and the Gd123 powder with Gd2O3 addition (Gd1.5Ba2Cu3O7-y(Gd1.5)) were used as raw powders for the fabrication of Gd123 bulk superconductors. The Gd123 and Gd1.5 bulk superconductors were fabricated by sintering or a top-seeded melt growth (TSMG) process. The superconducting transition temperature (Tc,onset) of the sintered Gd123 was 93 K and the transition width was as large as 20 K. The Tc,onset of the TSMG processed Gd123 was 82 K and the transition width was also as large as 12 K. The critical current density (Jc) at 77 K and 0 T of the sintered Gd123 and TSMG processed Gd123 were as low as a few hundreds A/cm2. The addition of 0.25 mole Gd2O3 and 1 wt.% CeO2 to Gd123 enhanced the Tc, Jc and magnetic flux density (H) of the TSMG processed Gd123 sample owing to the formation of the superconducting phase with high flux pinning capability. The Tc of the TSMG processed Gd1.5 was 92 K and the transition width was 1 K. The Jcs at 77 K (0 T and 2 T) were 3.2×104 A/cm2 and 2.5×104 A/cm2, respectively. The H at 77 K of the TSMG-processed Gd1.5 was 1.96 kG, which is 54% of the applied magnetic field (3.45 kG).
The electrical properties and surface morphology changes of a silicon wafer as a function of the HF concentration as the wafer is etched were studied. The HF concentrations were 28, 30, 32, 34, and 36 wt%. The surface morphology changes of the silicon wafer were measured by an SEM (80˚ tilted at ×200) and the resistivity was measured by assessing the surface resistance using a four-point probe method. The etching rate increased as the HF concentration increased. The maximum etching rate 27.31 μm/min was achieved at an HF concentration of 36 wt%. A concave wave formed on the wafer after the wet etching process. The size of the wave was largest and the resistivity reached 7.54 ohm·cm at an 30 wt% of HF concentration. At an HF concentration of 30 wt%, therefore, a silicon wafer should have good joining strength with a metal backing as well as good electrical properties.
The relationship the between electrical properties and surface roughness (Ra) of a wet-etched silicon wafer were studied. Ra was measured by an alpha-step process and atomic force microscopy (AFM) while varying the measuring range 10×10, 40×40, and 1000×1000μm. The resistivity was measured by assessing the surface resistance using a four-point probe method. The relationship between the resistivity and Ra was explained in terms of the surface roughness. The minimum error value between the experimental and theoretical resistivities was 4.23% when the Ra was in a range of 10×10μm according to AFM measurement. The maximum error value was 14.09% when the Ra was in a range of 40×40μm according to AFM measurement. Thus, the resistivity could be estimated when the Ra was in a narrow range.
The structural phase transformations of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-0.3PT) were studied using high resolution x-ray diffraction (HRXRD) as a function of temperature and electric field. A phase transformational sequence of cubic (C)→tetragonal (T)→rhombohedral (R) phase was observed in zero-field-cooled conditions; and a C→T→monoclinic (Mc)→ monoclinic (MA) phase was observed in the field-cooled conditions. The transformation of T to MA phase was realized through an intermediate Mc phase. The results also represent conclusive and direct evidence of a Mc to MA phase transformation in field-cooled conditions. Beginning from the zero-field-cooled condition, a R→MA→Mc→T phase transformational sequence was found with an increasing electric field at a fixed temperature. Upon removal of the field, the MA phase was stable at room temperature. With increasing the field, the transformation temperature from T to Mc and from Mc to MA phase decreased, and the phase stability ranges of both T and Mc phases increased. Upon removal of the field, the phase transformation from R to MA phase was irreversible, but from MA to Mc was reversible, which means that MA is the dominant phase under the electric field. In the M phase region, the results confirmed that lattice parameters and tilt angles were weakly temperature dependent over the range of investigated temperatures.
In this study, BaTiO3 thin films were grown by RF-magnetron sputtering, and the effects of the thin film thickness on the structural characteristics of BaTiO3 thin films were systematically investigated. Instead of the oxide substrates generally used for the growth of BaTiO3 thin films, p-Si substrates which are widely used in the current semiconductor processing, were used in this study in order to pursue high efficiency in device integration processing. For the crystallization of the grown thin films, annealing was carried out in air, and the annealing temperature was varied from 700˚C. The changed thickness was within 200 nm~1200 nm. The XRD results showed that the best crystal quality was obtained for ample thicknesses 700 nm~1200 nm. The SEM analysis revealed that Si/BaTiO3 are good quality interface characteristics within 300 nm when observed thickness. And surface roughness observed of BaTiO3 thin films from AFM measurement are good quality surface characteristics within 300 nm. Depth-profiling analysis through GDS (glow discharge spectrometer) showed that the stoichiometric composition could be maintained. The results obtained in this study clearly revealed BaTiO3 thin films grown on a p-Si substrate such as thin film thickness. The optimum thickness was 300 nm, the thin film was found to have the characteristics of thin film with good electrical properties.
Porous Ti-systems with unidirectionally aligned channels were synthesized by freeze-drying and a heat treatment process. TiH2 powder and camphene were used as the source materials of Ti and sublimable vehicles, respectively. Camphene slurries with TiH2 content of 10 and 15 vol% were prepared by milling at 50˚C with a small amount of oligomeric polyester dispersant. Freezing of the slurry was done in a Teflon cylinder attached to a copper bottom plate cooled at -25˚C while unidirectionally controlling the growth direction of the camphene. Pores were generated subsequently by sublimation of the camphene during drying in air for 48 h. The green body was heat-treated at 1100˚C for 1 h in a nitrogen and air atmosphere. XRD analysis revealed that the samples composed of TiN and TiO2 phase were dependent on the heat-treatment atmosphere. The sintered samples showed large pores of about 120 mm which were aligned parallel to the camphene growth direction. The internal wall of the large pores had relatively small pores with a dendritic structure due to the growth of camphene dendrite depending on the degree of nucleation and powder rearrangement in the slurry. These results suggest that a porous body with an appropriate microstructure can be successfully fabricated by freeze-drying and a controlled sintering process of a camphene/TiH2 slurry.
First, a purified sludge was calcined at various temperatures viz. 800, 900, 1000, 1100 and 1200˚C per hour. Subsequently 100 wt% of ware from Geryong mountain was mixed with 5~25 wt% of a purified sludge. Then the ware was treated at 1250˚C in an electric kiln to test a bending strength. The physicochemical property of the prepared ware was characterized by XRD, Raman and SEM analysis. Among the different percentage, 25 wt% of a ware in a purified sludge calcined at 1000˚C showed 689 kg/cm2 strength. Also the purified sludge calcined at 1000˚C was adequate physical properties than the other composites. Further to enhance the physical strength, 3 wt% TiO2 (a mineralizer) was added into the ware and the strength was increased up to 731 kg/cm2. The composites exhibit absorption and porosity rates of 0.17% and 0.39% respectively.