간행물

한국재료학회지 KCI 등재 SCOPUS Korean Journal of Materials Research

권호리스트/논문검색
이 간행물 논문 검색

권호

제28권 제1호 (2018년 1월) 11

1.
2018.01 구독 인증기관 무료, 개인회원 유료
Gas detection is necessary for various reasons, including the prevention of gas leakages and the creation of necessary environmental conditions. Among the gas detection methods, leakage of gas can be confirmed using materials that undergo color changes that are easily distinguished by the naked eye. Metal nanoparticles (NPs) experience variations in their absorption wavelengths under the localized surface plasmon effect (LSPR) with mechanical stresses, which change the distance between NPs. In this study, we attempted to detect the presence of gas utilizing the LSPR-related color change of a chain of Au NPs. The assembly of Au NPs, arranged in a chain shape, experienced a color change from dark blue to purple with a change in the distance between the NPs by applying a physical force, i.e., compression, stretching, and gas pressure. As the force of compression and the degree of stretching increased, the absorption wavelength shifted from doublet peaks at 650 and 550 nm to a singlet peak at 550 nm. Further, applying gas pressure caused an identical color change. With this result, we propose a method that could be applied to all gases that require detection based on gas pressure.
4,000원
2.
2018.01 구독 인증기관 무료, 개인회원 유료
There are various manufacturing processes for pure SiO2 that is used as abrasives, chemicals, filters, and glasses, and in metallurgy and optical industries. In the optical fiber industry, to produce SiO2 preform, SiCl4 is utilized as a raw material. However, the combustion reaction of SiCl4 has caused critical environmental issues, such as ozone deficiency by chlorine compounds, the greenhouse effect by carbon dioxide and corrosive gas such as hydrochloric acid. Thus, finding an alternative source that does not have those environmental issues is important for the future. Octamethylcyclotetrasiloxane (OMCTS or D4) as a chlorine free source is recently promising candidate for the SiO2 preform formation. In this study, we first conducted a vaporizer design to vaporize the OMCTS. The vaporizer for the OMCTS vaporization was produced on the basis of the results of the vaporizer design. The size of the primary particle of the SiO2 formed by OMCTS was less than 100 nm. X-ray diffraction patterns of the SiO2 indicated an amorphous phase. Fourier-transform infrared spectroscopy analysis revealed the Si-O-Si bond without the -OH group.
4,000원
3.
2018.01 구독 인증기관 무료, 개인회원 유료
In2O3 doped WO3 powders were prepared by a polymer solution route and their NO2 gas sensing properties were analyzed. The synthesized powders showed nano-sized particles with specific surface areas of 6.01~21.5 m2/g and the particle size and shape changed according to the content of In2O3. The gas sensors fabricated with the synthesized powders were tested at operating temperatures of 400~500 oC and 100~500 ppm concentrations of NO2 atmosphere. The particle size and In2O3 content affected on the initial sensor resistance in an air atmosphere. The highest sensitivity (8.57 at 500 oC), which was 1.77 higher than the sensor consisting of the pure WO3 sample, was measured in the 0.5 mol% In2O3 doping sample. In addition, the response time and recovery time were improved by the addition of In2O3.
4,000원
4.
2018.01 구독 인증기관 무료, 개인회원 유료
To study the impedance characteristics of a fluorescent OLED according to the device structure, we fabricated Device 1 using ITO / NPB / Alq3 / Liq / Al, Device 2 using ITO / 2-TNATA / NPB / Alq3 / Liq / Al, and Device 3 using ITO / 2-TNATA / NPB / SH-1:BD / Alq3 / Liq / Al. The current density and luminance decreased with an increasing number of layers of the organic thin films in the order of Device 1, 2, 3, whereas the current efficiency increased. From the Cole-Cole plot at a driving voltage of 6 V, the maximum impedance values of Devices 1, 2, and 3 were respectively 51, 108, and 160 Ω just after device fabrication. An increase in the impedance maximum value is a phenomenon caused by the charge mobility and the resistance between interfaces. With the elapse of time after the device fabrication, the shape of the Cole-Cole plot changed to a form similar to 0 or a lower voltage due to the degradation of the device. As a result, we were able to see that an impedance change in an OLED reflects the characteristics of the degradation and the layer.
4,000원
5.
2018.01 구독 인증기관 무료, 개인회원 유료
This study reports an environment-friendly synthetic strategy to process nickel oxide nanocrystals. A mesoporous nickel oxide nanostructure was synthesized using an environmentally benign biomimetic method. We used a natural rambutan peel waste resource as a raw material to ligate nickel ions to form nickel-ellagate complexes. The direct decomposition of the obtained complexes at 700 oC, 900 oC and 1100 oC in a static air atmosphere resulted in mesoporous nickel oxide nanostructures. The formation of columnar mesoporous NiO with a concentric stacked doughnuts architecture was purely dependent on the suitable direct decomposition temperature at 1100 oC when the synthesis was carried out. The prepared NiO nanocrystals were coated on cotton fabric and their antibacterial activity was also analyzed. The NiO nanoparticle-treated cotton fabric exhibited good antibacterial and wash durability performance.
4,000원
6.
2018.01 구독 인증기관 무료, 개인회원 유료
We report on the efficient detection of NO gas by an all-oxide semiconductor p-n heterojunction diode structure comprised of n-type zinc oxide (ZnO) nanorods embedded in p-type copper oxide (CuO) thin film. The CuO thin film/ZnO nanorod heterostructure was fabricated by directly sputtering CuO thin film onto a vertically aligned ZnO nanorod array synthesized via a hydrothemal method. The transport behavior and NO gas sensing properties of the fabricated CuO thin film/ ZnO nanorod heterostructure were charcterized and revealed that the oxide semiconductor heterojunction exhibited a definite rectifying diode-like behavior at various temperatures ranging from room temperature to 250 oC. The NO gas sensing experiment indicated that the CuO thin film/ZnO nanorod heterostructure had a good sensing performance for the efficient detection of NO gas in the range of 2-14 ppm under the conditions of an applied bias of 2 V and a comparatively low operating temperature of 150 oC. The NO gas sensing process in the CuO/ZnO p-n heterostructure is discussed in terms of the electronic band structure.
4,000원
7.
2018.01 구독 인증기관 무료, 개인회원 유료
Continuous efforts are being made to improve the efficiency of Si solar cells, which is the prevailing technology at this time. As opposed to the standard front-lit solar cell design, the back-lit design suffers no shading loss because all the metal electrodes are placed on one side close to the pn junction, which is referred to as the front side, and the incoming light enters the denuded back side. In this study, a systematic comparison between the two designs was conducted by means of computer simulation. Medici, a two-dimensional semiconductor device simulation tool, was utilized for this purpose. The 0.6 μm wavelength, the peak value for the AM-1.5 illumination, was chosen for the incident photons, and the minority-carrier recombination lifetime (τ), a key indicator of the Si substrate quality, was the main variable in the simulation on a p-type 150 μm thick Si substrate. Qualitatively, minority-carrier recombination affected the short circuit current (Isc) but not the opencircuit voltage (Voc). The latter was most affected by series resistance associated with the electrode locations. Quantitatively, when τ ≥ 500 μs, the simulation yielded the solar cell power outputs of 20.7 mW·cm−2 and 18.6 mW·cm−2, respectively, for the front-lit and back-lit cells, a reasonable 10 % difference. However, when τ < 500 μs, the difference was 20 % or more, making the back-lit design less than competitive. We concluded that the back-lit design, despite its inherent benefits, is not suitable for a broad range of Si solar cells but may only be applicable in the high-end cells where float-zone (FZ) or magnetic Czochralski (MCZ) Si crystals of the highest quality are used as the substrate.
4,000원
8.
2018.01 구독 인증기관 무료, 개인회원 유료
The demand for energy storage devices capable of operating at high temperatures is increasing. In order to operate at high temperatures, a device must have excellent thermal stability and no risk of explosion. Ionic liquids are electrolytes that satisfy the above conditions, and studies on improving their performance have attracted great interest. Here, we report the results of a study on the fabrication of a supercapacitor that has a composite electrolyte prepared by dispersing fumed silica in an ionic liquid. The fumed silica filler exhibits improved ionic conductivity and lower interfacial resistance. In particular, the silica nanoparticles with diameters of 10 nm exhibit better electrochemical properties than fillers of other diameters and have excellent device performance of 33 times higher than the pristine ionic liquid at high temperatures. This study can be used to improve the electrolytes of electrochemical devices, such as the next generation battery or lithium ion battery.
4,000원
9.
2018.01 구독 인증기관 무료, 개인회원 유료
Various carbon aerogels (CAs) were prepared from polymerization of resorcinol and formaldehyde and applied as the electrode materials of an electric double layer capacitor (EDLC) with the aim of controlling the textural and electrochemical properties of CAs by the type of base catalyst and the ratio of resorcinol to catalyst (R/C). The CAs from NaHCO3 and KHCO3 with H+ ions had higher specific surface areas but exhibited lower electrochemical properties than those from K2CO3 and Na2CO3, which had more uniform pore size distributions. The electrochemical properties of Na2CO3 were superior to those of K2CO3 probably because the polarizing power of Na+ ions was higher than K+ ions. With an increasing R/C ratio, the pore sizes of CA showed a tendency to increase but the uniformity of the pore size distribution got worse. For the four base catalysts, the highest electrochemical property was obtained at the R/C ratio of 500.
4,300원
10.
2018.01 구독 인증기관 무료, 개인회원 유료
Active clay, bentonite and zeolite were used as porous materials for humidity controlling ceramic boards. The specific area and the pore volume of active clay were higher than bentonite and zeolite. The flexible strength of the gypsum board decreased with an increasing amount of porous material, and the flexible strength was lowest when active clay with a higher specific surface area than others porous materials was added. The specific surface area and total pore volume of ceramic boards containing porous material were highest at 102.25 m2/g, 0.142 cm3/g, respectively, when the active clay was added. In addition, as the amount of added porous materials increased, the specific surface area and total pore volume of the ceramic board increased, but the average pore diameter decreased. The addition of s porous materials with a high specific area and a large pore volume improved the moisture absorptive and desorptive performance of the ceramic board. Therefore, in this experiment, the moisture absorptive and desorptive properties were the best when active clay was added. Furthermore, as the amount of added porous materials increased, the moisture absorptive and desorptive properties improved. When 70 mass% of active clay was added to α-type gypsum, the hygroscopicity was the highest, about 300 g/m2, in this experiment.
4,000원
11.
2018.01 구독 인증기관 무료, 개인회원 유료
Cobalt-incorporated zeolitic imidazolate framework ZIF-8 was synthesized by a simple one-pot synthesis method at room temperature. Powder X-ray diffraction patterns and energy dispersive X-ray spectrum confirmed the formation of the bimetallic Co/Zn-ZIF structure. UV-Vis diffuse reflectance spectra revealed that the bimetallic ZIF had a lower HOMO-LUMO gap compared with ZIF-8 due to the charge transfer process from organic ligands to cobalt centers. A hydrolytic stability test showed that Co/Zn-ZIF is very robust in aqueous solution - the most important criterion for any material to be applied in photodegradation. The photocatalytic efficiency of the synthesized samples was investigated over the Indigo Carmine (IC) dye degradation under solar simulated irradiation. Cobalt incorporated ZIF-8 exhibited high efficiency over a wide range of pH and initial concentration. The degradation followed through three distinct stages: a slow initial stage, followed by an accelerated stage and completed with a decelerated stage. Moreover, the photocatalytic performance of the synthesized samples was highly improved in alkaline environment rather than in acidic or neutral environments, which may have been because in high pH medium, the increased concentration of hydroxyl ion facilitated the formation of hydroxyl radicals, a reactive species responsible for the breaking of the Indigo Carmine structure. Thus, Co/Zn-ZIF is a promising and green material for solving the environmental pollution caused by textile industries.
4,000원