We prepare ZnO nanoparticles by environmentally friendly synthesis using Cyathea nilgiriensis leaf extract. Various phytochemical constituents are identified through the assessment of ethanolic extract of plant Cyathea nilgiriensis holttum by GC-MS analysis. The formation of ZnO nanoparticles is confirmed by FT-IR, XRD, SEM-EDX, TEM, SAED and PSA analysis. TEM observation reveals that the biosynthesized ZnO nanopowder has a hexagonal structure. The calculated average crystallite size from the high intense plane of (1 0 1) is 29.11 nm. The particle size, determined by TEM analysis, is in good agreement with that obtained by XRD analysis. We confirm the formation of biomolecules in plant extract by FT-IR analysis and propose a possible formation mechanism of ZnO nanoparticles. Disc diffusion method is used for the analyses of antimicrobial activity of ZnO nanoparticles. The synthesized ZnO nanoparticles exhibit antimicrobial effect in disc diffusion experiments. The biosynthesized ZnO nanoparticles display good antibacterial performance against B. subtilis (Gram-positive bacteria) and K. pneumonia (Gram-negative bacteria). Bio-synthesized nanoparticles using green method are found to possess good antimicrobial performance.
This study reports an environment-friendly synthetic strategy to process nickel oxide nanocrystals. A mesoporous nickel oxide nanostructure was synthesized using an environmentally benign biomimetic method. We used a natural rambutan peel waste resource as a raw material to ligate nickel ions to form nickel-ellagate complexes. The direct decomposition of the obtained complexes at 700 oC, 900 oC and 1100 oC in a static air atmosphere resulted in mesoporous nickel oxide nanostructures. The formation of columnar mesoporous NiO with a concentric stacked doughnuts architecture was purely dependent on the suitable direct decomposition temperature at 1100 oC when the synthesis was carried out. The prepared NiO nanocrystals were coated on cotton fabric and their antibacterial activity was also analyzed. The NiO nanoparticle-treated cotton fabric exhibited good antibacterial and wash durability performance.
In this study, an environment-friendly synthetic strategy to process zinc oxide nanocrystals is reported. The biosynthesis method used in this study is simple and cost-effective, with reduced solvent waste via the use of fruit peel extract as a natural ligation agent. The formation of ZnO nanocrystals using a rambutan peel extract was observed in this study. Rambutan peels has the ability to ligate zinc ions as a natural ligation agent, resulting in ZnO nanochain formation due to the presence of an extended polyphenolic system over the whole incubation period. Via transmission electron microscopy, successful formation of zinc oxide nanochains was confirmed. TEM observation revealed that the bioinspired ZnO nanocrystals were spherical and/or hexagonal particles with sizes between 50 and 100 nm.
본 연구에서는 열가공공정을 거쳐 제조된 Cu-Fe-Xi(Xi=Ag, Cr 또는 Co) 미세복합재료의 미세구조와 기계적 특성 및 전기적 특성에 대하여 조사하였다. 냉각가공 중에 수지상정들은 인발 방향에 평행하게 배열되고 필라멘트 형태로 연산되었다. Ag를 첨가한 미세복합재료가 같은 가공율에서 Co나 Cr를 첨가하는 미세복합재료보다 미세조직이 더욱 미세하게 관찰되었다. 제3첨가원소로 Ag를 함유하고 있는 Cu-Fe-Ag 미세복합재료의 강도와 전도도는 Co나 Cr를 첨가하는 미세복합재료보다 높게 나타났다. Cu-Fe-Ag 미세복합재료의 우수한 기계적 성질과 전기적 특성은 Ag가 함유되어 있는 경우 필라멘트의 미세성과 균일성이 높게 관찰되는 것과 관련이 있다. Cu-Fe-Xi 미세복합재료의 강도는 Fe 필라멘트의 간격을 고려한 Hall-Petch 형태의 식과 일치한다. Cu-Fe-Xi 미세복합재료의 파괴는 연성파괴가 관찰되었다.