간행물

한국재료학회지 KCI 등재 SCOPUS Korean Journal of Materials Research

권호리스트/논문검색
이 간행물 논문 검색

권호

제26권 제6호 (2016년 6월) 10

1.
2016.06 구독 인증기관 무료, 개인회원 유료
Ni-C composite films were prepared by co-deposition using a combined technique of plasma CVD and ion beam sputtering deposition. Depending on the deposition conditions, Ni-C thin films manifested three kinds of microstructure: (1) nanocrystallites of non-equilibrium carbide of nickel, (2) amorphous Ni-C film, and (3) granular Ni-C film. The electrical resistivity was also found to vary from about 102 μΩcm for the carbide films to about 104 μΩcm for the amorphous Ni-C films. The Ni-C films deposited at ambient temperatures showed very low TCR values compared with that of metallic nickel film, and all the films showed ohmic characterization, even those in the amorphous state with very high resistivity. The TCR value decreased slightly with increasing of the flow rate of CH4. For the films deposited at 200 oC, TCR decreased with increasing CH4 flow rate; especially, it changed sign from positive to negative at a CH4 flow rate of 0.35 sccm. By increasing the CH4 flow rate, the amorphous component in the film increased; thus, the portion of Ni3C grains separated from each other became larger, and the contribution to electrical conductivity due to thermally activated tunneling became dominant. This also accounts for the sign change of TCR when the filme was deposited at higher flow rate of CH4. The microstructures of the Ni-C films deposited in these ways range from amorphous Ni-C alloy to granular structures with Ni3C nanocrystallites. These films are characterized by high resistivity and low TCR values; the electrical properties can be adjusted over a wide range by controlling the microstructures and compositions of the films.
4,000원
2.
2016.06 구독 인증기관 무료, 개인회원 유료
In this work, recent progress on graphene/metal oxide composites as advanced materials for HgCl2 and CO2 capture was investigated. Density Functional Theory calculations were used to understand the effects of temperature on the adsorption ability of HgCl2 and water vapor on CO2 adsorption on CaO (001) with reinforced carbon-based nanostructures using B3LYP functional. Understanding the mechanism by which mercury and CO2 adsorb on graphene/CaO (g-CaO) is crucial to the design and fabrication of effective capture technologies. The results obtained from the optimized geometries and frequencies of the proposed cluster site structures predicted that with respect to molecular binding the system possesses unusually large HgCl2 (0.1- 0.4 HgCl2 g/g sorbent) and CO2 (0.2-0.6 CO2 g/g sorbent) uptake capacities. The HgCl2 and CO2 were found to be stable on the surface as a result of the topology and a strong interaction with the g-CaO system; these results strongly suggest the potential of CaO-doped carbon materials for HgCl2 and CO2 capture applications, the functional gives reliable answers compared to available experimental data.
4,000원
3.
2016.06 구독 인증기관 무료, 개인회원 유료
To produce 4N grade high-purity silica powder from natural ore, the mineralogical characteristics of natural silica ore were investigated and their effects on the purification process were revealed. The Chinese silica mineral ore used was composed of iron and aluminum as main impurities and calcium, magnesium, potassium, sodium, and titanium as trace impurities; these trace impurities generally exist as either single oxides or complex oxides. It was confirmed that liberation and acidic washing of the impurities were highly dependent on the particle size of the ground silica ore and on its mineralogical characteristics such as the distribution and phases of existing impurities. It is suggested that appropriate size reduction of silica ore should be realized for optimized purification according to the origin of the natural silica ore. A single step purification process, the mechano-chemical washing (MCW) process, was proposed and verified in comparison with the conventional multi step washing process.
4,000원
4.
2016.06 구독 인증기관 무료, 개인회원 유료
In this study, an environment-friendly synthetic strategy to process zinc oxide nanocrystals is reported. The biosynthesis method used in this study is simple and cost-effective, with reduced solvent waste via the use of fruit peel extract as a natural ligation agent. The formation of ZnO nanocrystals using a rambutan peel extract was observed in this study. Rambutan peels has the ability to ligate zinc ions as a natural ligation agent, resulting in ZnO nanochain formation due to the presence of an extended polyphenolic system over the whole incubation period. Via transmission electron microscopy, successful formation of zinc oxide nanochains was confirmed. TEM observation revealed that the bioinspired ZnO nanocrystals were spherical and/or hexagonal particles with sizes between 50 and 100 nm.
4,000원
5.
2016.06 구독 인증기관 무료, 개인회원 유료
Porous SiC beads were prepared by freeze-drying a polycarbosilane (PCS) emulsion. The water-in-oil (w/o) emulsion, which was composed of water, PCS dissolved p-xylene, and sodium xylenesulfonate (SXS) as an emulsifier, was frozen by dropping it onto a liquid N2 bath; this process resulted in 1~2 mm sized beads. Beads were cured at 200 oC for 1 h in air and heat-treated at 800 oC and 1400 oC for 1 h in an Ar gas flow. Two types of pores, lamella-shaped and spherical pores, were observed. Lamellar-shaped pores were found to develop during the freezing of the xylene solvent. Water droplets in the w/o emulsion were changed into spherical pores under freeze-drying. At 1400 oC of heat-treatment, porous SiC was synthesized with a low level of impurities.
4,000원
6.
2016.06 구독 인증기관 무료, 개인회원 유료
This paper presents a study of the tensile properties of austenitic high-manganese steel specimens with different grain sizes. Although the stacking fault energy, calculated using a modified thermodynamic model, slightly decreased with increasing grain size, it was found to vary in a range of 23.4 mJ/m2 to 27.1 mJ/m2. Room-temperature tensile test results indicated that the yield and tensile strengths increased; the ductility also improved as the grain size decreased. The increase in the yield and tensile strengths was primarily attributed to the occurrence of mechanical twinning, as well as to the grain refinement effect. On the other hand, the improvement of the ductility is because the formation of deformation-induced martensite is suppressed in the high-manganese steel specimen with small grain size during tensile testing. The deformationinduced martensite transformation resulting from the increased grain size can be explained by the decrease in stacking fault energy or in shear stress required to generate deformation-induced martensite transformation.
4,000원
7.
2016.06 구독 인증기관 무료, 개인회원 유료
Three kinds of porous polymer were synthesized using a solvothermal of tri-4,4’- diphenylmethane diisocyanate (MDI-trimer) and different diamino monomers. The effects of the synthesis conditions and the monomer selection on the synthesis of porous polymer properties were studied. The results show that the synthesis of NH2-containing monomer molecules smaller the microporous polymers was easy to implement; the specific surface areas of the polymers are related to the monomer ratio and the reaction time. The results show that the synthesized porous polymer had good hydrogen storage performance; the hydrogen storage ability improved with the addition of heterocyclic nitrogen.
4,000원
8.
2016.06 구독 인증기관 무료, 개인회원 유료
Cu-30 vol% SiC composites with relatively densified microstructure and a sound interface between the Cu and SiC phases were obtained by pressureless sintering of PCS-coated SiC and Cu powders. The coated SiC powders were prepared by thermal curing and pyrolysis of PCS. Thermal curing at 200 oC was performed to fabricate infusible materials prior to pyrolysis. The cured powders were heated treated up to 1600 oC for the pyrolysis process and for the formation of SiC crystals on the surface of the SiC powders. XRD analysis revealed that the main peaks corresponded to the α-SiC phase; peaks for β-SiC were newly appeared. The formation of β-SiC is explained by the transformation of thermally-cured PCS on the surface of the initial α-SiC powders. Using powder mixtures of coated SiC powder, hydrogen-reduced Cu-nitrate, and elemental Cu powders, Cu-SiC composites were fabricated by pressureless sintering at 1000 oC. Microstructural observation for the sintered composites showed that the powder mixture of PCS-coated SiC and Cu exhibited a relatively dense and homogeneous microstructure. Conversely, large pores and separated interfaces between Cu and SiC were observed in the sintered composite using uncoated SiC powders. These results suggest that Cu-SiC composites with sound microstructure can be prepared using a PCS coated SiC powder mixture.
4,000원
9.
2016.06 구독 인증기관 무료, 개인회원 유료
To observe the bonding structure and electrical characteristics of a GZO oxide semiconductor, GZO was deposited on ITO glasses and annealed at various temperatures. GZO was found to change from crystal to amorphous with increasing of the annealing temperatures; GZO annealed at 200 oC came to have an amorphous structure that depended on the decrement of the oxygen vacancies; increase the mobility due to the induction of diffusion currents occurred because of an increment of the depletion layer. The increasing of the annealing temperature caused a reduction of the carrier concentration and an increase of the bonding energy and the depletion layer; therefore, the large potential barrier increased the diffusion current dna the Hall mobility. However, annealing temperatures over 200 oC promoted crystallinity by the defects without oxygen vacancies, and then degraded the depletion layer, which became an Ohmic contact without a potential barrier. So the current increased because of the absence of a potential barrier.
4,000원
10.
2016.06 구독 인증기관 무료, 개인회원 유료
ZnO with wurtzite structure has a wide band gap of 3.37 eV. Because ZnO has a direct band gap and a large exciton binding energy, it has higher optical efficiency and thermal stability than the GaN material of blue light emitting devices. To fabricate ZnO devices with optical and thermal advantages, n-type and p-type doping are needed. Many research groups have devoted themselves to fabricating stable p-type ZnO. In this study, As+ ion was implanted using an ion implanter to fabricate p-type ZnO. After the ion implant, rapid thermal annealing (RTA) was conducted to activate the arsenic dopants. First, the structural and optical properties of the ZnO thin films were investigated for as-grown, as-implanted, and annealed ZnO using FE-SEM, XRD, and PL, respectively. Then, the structural, optical, and electrical properties of the ZnO thin films, depending on the As ion dose variation and the RTA temperatures, were analyzed using the same methods. In our experiment, p-type ZnO thin films with a hole concentration of 1.263 × 1018 cm−3 were obtained when the dose of 5 × 1014 As ions/cm2 was implanted and the RTA was conducted at 850 oC for 1 min.
4,000원