간행물

한국재료학회지 KCI 등재 SCOPUS Korean Journal of Materials Research

권호리스트/논문검색
이 간행물 논문 검색

권호

제19권 제7호 (2009년 7월) 10

1.
2009.07 구독 인증기관 무료, 개인회원 유료
Metal thin film patterns on a LTCC substrate, which was connected through inner via and metal paste for electrical signals, were formed by a screen printing process that used electric paste, such as silver and copper, in a conventional method. This method brought about many problems, such as non uniform thickness in printing, large line spaces, and non-clearance. As a result of these problems, it was very difficult to perform fine and high resolution for high frequency signals. In this study, the electric signal patterns were formed with the sputtered metal thin films (Ti, Cu) on an LTCC substrate that was coated with protective oxide layers, such as TiO2 and SiO2. These electric signal patterns' morphology, surface bonding strength, and effect on electro plating were also investigated. After putting a sold ball on the sputtered metal thin films, their adhesion strength on the LTCC substrate was also evaluated. The protective oxide layers were found to play important roles in creating a strong design for electric components and integrating circuit modules in high frequency ranges.
4,000원
2.
2009.07 구독 인증기관 무료, 개인회원 유료
The optical characterization of self-assembled InAs/AlAs Quantum Dots(QD) grown by MBE(Molecular Beam Epitaxy) was investigated by using Photoluminescence(PL) spectroscopy. The influence of thin AlAs barrier on QDs were carried out by utilizing a pumping beam that has lower energy than that of the AlAs barrier. This provides the evidence for the tunneling of carriers from the GaAs layer, which results in a strong QD intensity compared to the GaAs at the 16 K PL spectrum. The presence of two QDs signals were found to be associated with the ground-states transitions from QDs with a bimodal size distribution made by the excitation power-dependent PL. From the temperature-dependent PL, the rapid red shift of the peak emission that was related to the QD2 from the increasing temperature was attributed to the coherence between the QDs of bimodal size distribution. A red shift of the PL peak of QDs emission and the reduction of the FWHM(Full Width at Half Maximum) were observed when the annealing temperatures ranged from 500 ˚C to 750 ˚C, which indicates that the interdiffusion between the dots and the capping layer was caused by an improvement in the uniformity size of the QDs.
4,000원
3.
2009.07 구독 인증기관 무료, 개인회원 유료
Ti scaffolds with a three-dimensional porous structure were successfully fabricated using powder metallurgy and modified rapid prototyping (RP) process. The fabricated Ti scaffolds showed a highly porous structure with interconnected pores. The porosity and pore size of the scaffolds were in the range of 66~72% and 300~400 μm, respectively. The sintering of the fabricated scaffolds under the vacuum caused the Ti particles to bond to each other. The strength of the scaffolds depended on the layering patterns. The compressive strength of the scaffolds ranged from 15 MPa to 52 MPa according to the scaffolds' architecture. The alkali treatment of the fabricated scaffolds in an aqueous NaOH solution was shown to be effective in improving the bioactivity. The surface of the alkali-treated Ti scaffolds had a nano-sized fibre-like structure. The modified surface showed a good apatite forming ability. The apatite was formed on the surface of the alkali treated Ti scaffolds within 1 day. The thickness of the apatite increased when the soaking time in a simulated body fluid (SBF) solution increased. It is expected that the surface modification of Ti scaffolds by alkali treatment could be effective in forming apatites in vivo and can subsequently enhance bone formation.
4,000원
4.
2009.07 구독 인증기관 무료, 개인회원 유료
The spot weldability of dissimilar metal joints between stainless steels (AISI316) and interstitial free (IF) steels were investigated. This study was aimed to determine the spot welding parameters for a dissimilar metal joint and to evaluate the dissimilar metal joint's weldability, including its welding nugget shape, tensileshear strength, hardness, and microstructure. The fracture surface was investigated by using a Scanning Electron Microscopy (SEM). The experimental results showed that the shape of nugget was asymmetric, in which the fusion zone of the STS316 sheet was larger due to the higher bulk-resistance. The microstructure of the fusion zone was fully martensite. In order to evaluate the microstructure further, dilution of stainless steels were calculated and imposed onto the Schaeffler diagram. The predicted microstructure from the Schaeffler diagram was martensite. In order to confirm the predicted microstructure, XRD measurements were carried out. The results showed that that initial weld nugget was composed of austenite and martensite.
4,000원
5.
2009.07 구독 인증기관 무료, 개인회원 유료
Indium Tin Oxide (ITO) thin films on Polyethylene Terephtalate (PET) substrate were prepared by Roll-to-Roll sputter system with targets of 5 wt% and 10 wt% SnO2 at room temperature. The influence of the chromaticity (b*) and transmittance properties of the ITO Films were investigated. The ITO thin films were deposited as a function of the DC power, rolling speed, and Ar/O2 gas flow ratio, and then characterized by spectrophotometer. Their crystallinity and surface resistance were also analyzed by X-ray diffractometer and 4-point probe. As a result, the chromaticity (b*) and transmittance of the ITO films were broadly dependent on the thickness, which was controlled by the rolling speed. When the ITO films were prepared with the DC power of 300 W and the Ar/O2 gas flow ratio of 30/1 sccm using 10 wt% SnO2 target as a function of the rolling speeds 0.01 through 0.10 m/min, its chromaticity (b*) and transmittance were about -4.01 to 11.28 and 75.76 to 86.60%, respectively. In addition, when the ITO films were deposited with the DC power of 400W and the Ar/O2 gas flow ratio of 30/2 sccm used in 5 wt% SnO2 target, its chromaticity (b*) and transmittance were about -2.98 to 14.22 and 74.29 to 88.52%, respectively.
4,000원
6.
2009.07 구독 인증기관 무료, 개인회원 유료
Efforts to reduce noise in industrial application fields, such as automobiles, aircrafts, and plants have been gaining considerable attention while a sound proof wall to protect people from the noise has been intensively investigated by many researchers. In this study, our research group suggested creating a new sound proof wall composed of scrap aluminum chips and perforated plates in a commercial polyester sound proof wall, which was then successfully fabricated. This wall's sound absorption characteristics were measured by an impedance tube method. The sound absorption property was evaluated by measuring the Noise Reduction Coefficient (NRC) to the standard, ASTM C 423-90a. The noise reduction coefficient of the sound proof wall composed of 3.5 vol.% and 7.5 vol.% of scrap aluminum chips relatively increased to 5% and 8% compared to the commercial polyester sound proof wall. The scrap aluminum perforated plate also relatively increased to 13% compared to the commercial polyester sound proof wall.
3,000원
7.
2009.07 구독 인증기관 무료, 개인회원 유료
Niobium(Nb) and Tantalum(Ta) are rarely found apart in nature and never in the free state. The element niobium amounts to 3% of the crustal abundance. On the whole, the niobium capacitor showed somewhat more unstable characteristics than the commercial tantalum capacitors, but is nonetheless considered applicable as a future substitute for tantalum capacitors. In this study, niobium powder was made from potassium heptafluoroniobite(K2NbF7) by using sodium(Na) as a reductant and KCl and KF as diluents based on the hunter sodiothermic reduction method.,In order to obtain a high surface area niobium powder via the sodiothermic reduction method, a certain amount of diluent, such as alkali metal halides selected from NaCl, KCl, KF and NaF, was added in the raw materials to be reduced. However, if a higher surface area of powder is required, more diluents need to be used in the said method in order to produce niobium powder. But when more diluents are used, the niobium powder will be contaminated with more impurities and the yield will also decreased.
4,000원
8.
2009.07 구독 인증기관 무료, 개인회원 유료
2-dimensional silica-silica Continuous Fiber-reinforced Ceramic.matrix Composites (CFCCs) were fabricated by a sol-gel infilitration method that has a changing processing condition, such as the repetitions of infilitration. In order to investigate the relationship between the processing condition and the mechanical properties of composites, the mechanical properties of specimens were measured by means of a 4-point flexural strength test while the evidence of strength degradation were microstructurally characterized. There seemed to be a minimum density value that existed at which the delamination between the fabrics would not occur. In the case that the density of silica CFCCs exceeded 1.55 g/cm3, the flexural strength also exceeded approximately 18 MPa at least. By applying the Minimum Solid Area (MSA) analysis of the porous structure, the correlation between the relative density and the mechanical properties of composites will be discussed.
4,000원
9.
2009.07 구독 인증기관 무료, 개인회원 유료
In this study, Ti powder was fabricated from Ti scrap by the Hydrogenation-Dehydrogenation (HDH)method. Hydrogenation reactions of Ti scrap occurred at near 450oC with a sudden increase in the reactiontemperature and the decreasing pressure of hydrogen gas during the hydrogenation process in the furnace. Thedehydrogenation process was also carried out at 750oC for 2hrs in a vacuum of 10-4torr. After the HDHprocess, a deoxidation treatment was carried out with the Ca(purity: 99.5) at 700oC for 2hrs in the vacuumsystem. It was found that the oxidation content of Ti powder that was deoxidized with Ca showed noticeablylower values, compared to the content obtained by HDH process. In order to fabricate Ti compacts, Ti powderwas sintered at 1100~1400oC for 2hrs under a vacuum of 10-4torr. The relative density of compact was 94.9%at 1300oC. After sintering, all of the Ti compacts showed brittle fracture behavior, which occurred in an elasticrange with short plastic yielding up to a peak stress.
4,000원
10.
2009.07 구독 인증기관 무료, 개인회원 유료
The friction characteristics of automotive brake friction materials that contained different ceramic content were investigated. Several kinds of raw materials, such as resin-based binder, reinforcing fiber, friction restraint, abrasive, and filling materials were mixed, pressed, and heated in order to make the brake friction materials. The contents of SiC and BaSO4 changed from 5 vol% to 20 vol%, respectively. In addition to this, the content of Al2O3 adjusted from 1 vol% to 16 vol%. The surface morphology of the SiC containing sample appeared rough while more debris was observed when the contents of SiC increased. This implies that the SiC containing brake composite was not adequate for the automobile. However, the relatively smooth surface was observed in samples that contained the Al2O3. But the roughness was low with a content of 11 vol% Al2O3 compared to the other samples. This is consistent with the abrasive properties of the samples. In the case of BaSO4 containing samples, the smoothes surface was observed in the contents of 15 vol% BaSO4. Thus, it was concluded that the 11 vol% Al2O3 and 15 vol% BaSO4 containing composite would be the optimum content for the brake composite. Similar to the results of the surface morphology, the abrasion resistance consistently decreased when the content of SiC increased. On the contrary, the sample that contained 11 vol% Al2O3 and 15 vol% BaSO4 showed the highest abrasion resistance compared to the other samples.
3,000원