간행물

한국재료학회지 KCI 등재 SCOPUS Korean Journal of Materials Research

권호리스트/논문검색
이 간행물 논문 검색

권호

제22권 제3호 (2012년 3월) 10

1.
2012.03 구독 인증기관 무료, 개인회원 유료
The effect of Al addition on the precipitation behavior of a binary Mg-Zn alloy was investigated based on thechanges in the morphology, distribution and element concentration of precipitates formed during aging treatment. The as-castMg-6.0 mass%Zn (Mg-6Zn) and Mg-6.0 mass%Zn-3.0 mass%Al (Al-added) were homogenized at 613K for 48h and at 673Kfor 12h; they were then solid solution treated at 673K for 0.5 h and 1 h, respectively. The Mg-6Zn and Al-added alloys wereaged at 403 K and 433K. The peak hardness of the Al-added alloy was higher than that of the Mg-6Zn alloy at each agingtemperature. Rod-like, plate-like, blocky, and lath-like precipitates were observed in the Al-added alloy aged at 433K for230.4ks, although the rod-like and plate-like precipitates were observed in the TEM microstructure of the Mg-6Zn alloy agedat 433K for 360 ks. Moreover, the precipitates in the Al-added alloy were refined and densely distributed compared with thosein the Mg-6Zn alloy. The Cliff-Lorimer plots obtained by the EDS analysis of the rod-like and plate-like phases in theAl-added alloy peak aged at 433K for 230.4ks were examined. It was confirmed that the phases had higher concentrationof solute Al atom than was present in the phases, indicating that the properties of precipitates can be changed by Al addition.
4,000원
2.
2012.03 구독 인증기관 무료, 개인회원 유료
We synthesized porous Co3O4/RuO2 composite using the soft template method. Cetyl trimethyl ammonium bromide (CTAB) was used to make micell as a cation surfactant. The precipitation of cobalt ion and ruthenium ion for making porosity in particles was induced by OH- ion. The porous Co3O4/RuO2 composite was completely synthesiszed after anealing until 250˚C at 3˚C/min. From the XRD ananysis, we were able to determine that the porous Co3O4/RuO2 composite was comprised of nanoparticles with low crystallinity. The shape or structure of the porous Co3O4/RuO2 composite was studied by FE-SEM and FE-TEM. The size of the porous Co3O4/RuO2 composite was 20~40 nm. From the FE-TEM, we were able to determine that porous cavities were formed in the composite particles. The electrochemical performance of the porous Co3O4/RuO2 composite was measured by CV and charge-discharge methods. The specific capacitances, determined through cyclic voltammetry (CV) measurement, were ~51, ~47, ~42, and ~33 F/g at 5, 10, 20, and 50 mV/sec scan rates, respectively. The specific capacitance through charge-discharge measurement was ~63 F/g in the range of 0.0~1.0 V cutoff voltage and 50 mAh/g current density.
4,000원
3.
2012.03 구독 인증기관 무료, 개인회원 유료
The microstructures and mechanical properties of friction stir welded lap joints of Inconel 600 and SS 400 were evaluated; friction stir welding was carried out at a tool rotation speed of 200 rpm and welding speed of 100 mm/min. Electron back-scattering diffraction and transmission electron microscopy were introduced to analyze the grain boundary characteristics and the precipitates, respectively. Application of friction stir welding was notably effective at reducing the grain size of the stir zone. As a result, the reduced average grain size of Inconel 600 ranged from 20μm in the base material to 8.5μm in the stir zone. The joint interface between Inconel 600 and SS 400 showed a sound weld without voids and cracks, and MC carbides with a size of around 50 nm were partially formed at the Inconel 600 area of lap joint interface. However, the intermetallic compounds that lead to mechanical property degradation of the welds were not formed at the joint interface. Also, a hook, along the Inconel 600 alloy from SS 400, was formed at the advancing side, which directly brought about an increase in the peel strength. In this study, we systematically discussed the evolution of microstructures and mechanical properties of the friction stir lap joint between Inconel 600 and SS 400.
4,000원
4.
2012.03 구독 인증기관 무료, 개인회원 유료
We present a method of graphene synthesis with high thickness uniformity using the thermal chemical vapor deposition (TCVD) technique; we demonstrate its application to a grid supporting membrane using transmission electron microscope (TEM) observation, particularly for nanomaterials that have smaller dimensions than the pitch of commercial grid mesh. Graphene was synthesized on electron-beam-evaporated Ni catalytic thin films. Methane and hydrogen gases were used as carbon feedstock and dilution gas, respectively. The effects of synthesis temperature and flow rate of feedstock on graphene structures have been investigated. The most effective condition for large area growth synthesis and high thickness uniformity was found to be 1000˚C and 5 sccm of methane. Among the various applications of the synthesized graphenes, their use as a supporting membrane of a TEM grid has been demonstrated; such a grid is useful for high resolution TEM imaging of nanoscale materials because it preserves the same focal plane over the whole grid mesh. After the graphene synthesis, we were able successfully to transfer the graphenes from the Ni substrates to the TEM grid without a polymeric mediator, so that we were able to preserve the clean surface of the as-synthesized graphene. Then, a drop of carbon nanotube (CNT) suspension was deposited onto the graphene-covered TEM grid. Finally, we performed high resolution TEM observation and obtained clear image of the carbon nanotubes, which were deposited on the graphene supporting membrane.
4,000원
5.
2012.03 구독 인증기관 무료, 개인회원 유료
Magnetic nanoparticles for ferromagnetic fluids and magnetorheological fluids were prepared by chemical coprecipitation and mechanical milling, respectively. The surface-treated particles were dispersed at various weight ratios into a medium of polyethylene glycol. In order to evaluate the elastic modulus of the fluids, ultrasonic pulse velocities were measured with an ultrasonic test using transducers of 5MHz and 2.25MHz. The ultrasonic signals were only available with a transducer of 2.25 MHz at fluid concentrations of 5 mg/ml and lower. In the case of applying transducers over 2.25 MHz and concentrations over 5 mg/ml to the fluids, it was impossible to observe effective ultrasonic signals due to an excessive scattering of the pulses by the dispersed particles. Elastic moduli of the magnetorheological fluids were 5.44 GPa and 6.13 GPa with concentrations of 25 mg/ml and 50 mg/ml, respectively; these values were higher by 40% than the values of 4.04 GPa and 4.28 GPa of ferromagnetic fluids at the same concentrations. As for the effect of an external magnetic field on these dilute fluids, the ultrasonic signals were positioned in a very similar way, which was probably due to insufficient arrangement of the particles even though the reflection energy of the ultrasonic waves apparently increased.
3,000원
6.
2012.03 구독 인증기관 무료, 개인회원 유료
Compared with bulk material, quantum dots have received increasing attention due to their fascinating physical properties, including optical and electronic properties, which are due to the quantum confinement effect. Especially, Luminescent CdSe quantum dots have been highly investigated due to their tunable size-dependent photoluminescence across the visible spectrum. They are of great interest for technical applications such as light-emitting devices, lasers, and fluorescent labels. In particular, quantum dot-based light-emitting diodes emit high luminance. Quantum dots have very high luminescence properties because of their absorption coefficient and quantum efficiency, which are higher than those of typical dyes. CdSe quantum dots were synthesized as a function of the synthesis time and synthesis temperature. The photoluminescence properties were found strongly to depend on the reaction time and the temperature due to the core size changing. It was also observed that the photoluminescence intensity is decreased with the synthesis time due to the temperature dependence of the band gap. The wavelength of the synthesized quantum dots was about 550-700 nm and the intensity of the photoluminescence increased about 22~70%. After the CdSe quantum dots were synthesized, the particles were found to have grown until reaching a saturated concentration as time increased. Red shift occurred because of the particle growth. The microstructure and phase developments were measured by transmission electron microscopy (TEM) and X-ray diffractometry (XRD), respectively.
4,000원
7.
2012.03 구독 인증기관 무료, 개인회원 유료
Red phosphors of Gd1-xAl3(BO3)4:Eux3+ were synthesized by using the solid-state reaction method. The phasestructure and morphology of the phosphors were measured using X-ray diffraction (XRD) and field emission-scanning electronmicroscopy (FE-SEM), respectively. The optical properties of GdAl3(BO3)4:Eu3+ phosphors with concentrations of Eu3+ ions of0, 0.05, 0.10, 0.15, and 0.20mol were investigated at room temperature. The crystals were hexagonal with a rhombohedrallattice. The excitation spectra of all the phosphors, irrespective of the Eu3+ concentrations, were composed of a broad bandcentered at 265nm and a narrow band having peak at 274nm. As for the emission spectra, the peak wavelength was 613nmunder a 274nm ultraviolet excitation. The intensity ratio of the red emission transition (5D0→7F2) to orange (5D0→7F1) showsthat the Eu3+ ions occupy sites of no inversion symmetry in the host. In conclusion, the optimum doping concentration of Eu3+ions for preparing GdAl3(BO3)4:Eu3+ phosphors was found to be 0.15mol.
4,000원
8.
2012.03 구독 인증기관 무료, 개인회원 유료
Ti-6Al-4V ELI (Extra Low Interstitial) alloy have been widely used as alternative to bone due to its excellent biocompatibility, although it still has many problems such as high elastic modulus and toxicity. Therefore, biomaterials with low elastic modulus and non toxic characteristics have to be developed. A novel β Ti-35wt%Nb-7wt%Zr-Calcium pyrophosphate (CPP) composite that is a biocompatible alloy without elemental Al or V was fabricated by spark plasma sintering (SPS) at 1000˚C under 70 MPa using high energy mechanical milled (HEMM) powder. The microstructure and phases of the milled powders and the sintered specimens were studied using SEM, TEM, and XRD. Ti-35wt%Nb-7wt%Zr alloy was transformed from α phase to β phase in the 4h-milled powder by sintering. The sintered specimen using the 4h-milled powder showed that all the elements were distributed very homogeneously and had higher density and hardness. β Ti alloy-CPP composite, which has nanometer particles, was fabricated by SPS using HEMMed powder. During the sintering process, CaTiO3, TixOy, and CaO were formed because of the reaction between Ti and CPP. The Vickers hardness of the composites increases with the increase of the milling time and the addition of CPP. The biocompatibility of the Ti-Nb-Zr alloys was improved by addition of CPP.
4,000원
9.
2012.03 구독 인증기관 무료, 개인회원 유료
In this work, AlON-Al2O3 coatings were prepared on Al2021 alloy by the electrolytic plasma processing (EPP) method. The experimental electrolytes include: 2 g/l NaOH as the electrolytic conductive agent, 10 g/l Na2AlO2 as the alumina formative agent, and 0.5 g/l NaNO2, NaNO3, and NH4NO3 as the nitride inducing agents. The effects of different nitrogen inducing agents were studied by a combined compositional and structural analyses of the ceramic coatings carried out by Xray diffractometry (XRD) and scanning electron microscopy (SEM) for the specimens EPP-treated at room temperature for 15 min under a hybrid voltage of 260 DC along with an AC 50 Hz power supply (200 V). Microhardness tests and wear tests were carried out to correlate the evolution of the microstructure and the resulting mechanical properties. Potentiodynamic polarizations and immersion corrosion tests were carried out in 3.5wt% NaCl water solutions under static conditions in order to evaluate the corrosion behavior of the coated samples. The results demonstrate that NaNO2 is proven to be a good nitrogen inducing agent to produce high quality AlON-Al2O3 ceramic coatings.
3,000원
10.
2012.03 구독 인증기관 무료, 개인회원 유료
Hydrogen is in the spotlight as an alternative next generation energy source for the replacement of fossil fuels because it has high specific energy density and emits almost no pollution, with zero CO2 emission. In order to use hydrogen safely, reliable storage and transportation methods are required. Recently, solid hydrogen storage systems using metal hydrides have been under extensive development for application to fuel cell vehicles and fuel cells of MCFC and SOFC. For the practical use of hydrogen on a commercial basis, hydrogen storage materials should satisfy several requirements such as 1) hydrogen storage capacity of more than 6.5wt.% H2, moderate hydrogen release temperature below 100˚C, 3) cyclic reversibility of hydrogen absorption/desorption, 4) non toxicity and low price. Among the candidate materials, Li based metal hydrides are known to be promising materials with high practical potential in view of the above requirements. This paper reviews the characteristics and recent R&D trends of Li based complex hydrides, Li-alanates, Li-borohydrides, and Li-amides/imides.
4,000원