Magnesium alloys are of emerging interest in the automotive, aerospace and electronic industries due to their light weight, high specific strength, damping capacity, etc. However, practical applications are limited because magnesium alloys have poor formability at room temperature due to the lack of slip systems and the formation of basal texture, both of which characteristics are attributed to the hcp crystal structure. Fortunately, many magnesium alloys, even commercialized AZ or ZK series alloys, exhibit superplastic behavior and show very large tensile ductility, which means that these materials have potential application to superplastic forming (SPF) of magnesium alloy sheets. The SPF technique offers many advantages such as near net shaping, design flexibility, simple process and low die cost. Superplasticity occurs in materials having very small grain sizes of less than 10 μm and these small grains in magnesium alloys can be achieved by thermomechanical treatment in conventional rolling or extrusion processes. Moreover, some coarse-grained magnesium alloys are reported to have superplasticity when grain refinement occurs through recrystallization during deformation in the initial stage. This report reviews the characteristics of superplastic magnesium alloys with high-strain rate and coarse grains. Finally, some examples of SPF application are suggested.
Porous metals are called as a new material of 21th century because they show not only extremely low density, but also novel physical, thermal, mechanical, electrical, and acoustic properties. Since the late in the 1990‘s, considerable progress has been made in the production technologies of many kinds of porous metals such as aluminum, titanium, nickel, copper, stainless steel, etc. The commercial applications of porous metals have been increased in the field of light weight structures, sound absorption, mechanical damping, bio-materials, thermal management for heat exchanger and heat sink. Especially, the porous metals are promising in automotive applications for light-weighting body sheets and various structural components due to the good relation between weight and stiffness. This paper reviews the recent progress of production techniques using molten metal bubbling, metal foaming, gas expansion, hollow sphere structure, unidirectional solidification, etc, which have been commercialized or under developing, and finally introduces several case studies on the potential applications of porous metals in the area of heat sink, automotive pannel, cathod for Ni-MH battery, golf putter and medical implant.
2009~2011년 동안 국내 주요 배추 재배지 5개 지역(평창, 홍천, 봉화, 무주, 제주)에서 살충제에 대한 복숭아혹진딧물의 저항성 발달 정도를 조사하고, 야외 개체군에 적용 가능한 살충제 저항성 마커를 개발하기 위해 본 연구를 수행하였다. 조사된 5개 지역 개체군 모두 여러 살충제 종류에 대하여 다양한 저항성을 보였다. 다양한 저항성을 보인 5개 지역 야외 개체군으로부터 여라 살충제에 대하여 복합적으로 저항성을 보이는 복합저항성 계통(MR)을 선발하였고, 이 MR과 모든 지역 채집 개체군에 대해 등전점전기영동과 정량염기서열분석(quantitative sequencing, QS)을 통하여 에스터레이즈 과발현과 살충제 작용점 내 돌연변이를 확인하였다. MR을 포함한 모든 야외 개체군에서 에스터레이즈의 과발현과 아세틸콜린에스터레이즈 1 유전자(ace1)의 StoF 돌연변이를 확인할 수 있었다. 넉다운 저항성 돌연변이로 잘 알려진 파라 타입 나트륨 채널 유전자(para)의 LtoF 돌연변이는 모든 지역 채집 개체군은 물론 비펜스린에 대해 3,461배 저항성을 보이는 MR에서도 발견되지 않았다. 그 외에 MtoL 돌연변이를 발견하였는데, 생물검정 결과 저항성 수준과 돌연변이 발생 빈도가 일치하였다. 따라서 생물검정 대신, 이러한 분자 마커를 활용 한다면 더 효율적으로 살충제 저항성 평가가 가능할 것이다. 이러한 분자 마커들(ace1의 StoF, para의 MtoL)은 정량염기서열분석, PCR amplification of specific alleles (PASA) 등의 진단 방법에 쉽게 응용이 가능 하고, 이러한 방법은 야외 복숭아혹진딧물 저항성 관리에 적용이 가능 할 것이다.
왕담배나방은 옥수수, 콩, 토마토, 담배 등 매우 넓은 범위의 작물을 가해하는 전 세계적인 해충으로 최근 평창 등 고랭지 지역에서의 피해가 점차 늘어나고 있는 실 정이다. 특히 옥수수에서 큰 피해를 주고 있는데, 이삭의 윗부분을 주로 가해한다. 현재까지 고랭지의 왕담배나방에 대한 연구가 거의 없는 실정이라 종합적인 방제 체계를 구축하고자 페로몬 트랩과 육안 조사를 통해 발생 패턴을 조사하였으며, 방 제제를 선발하였다. 평창군 대관령면(해발 800m), 대화면(700m), 홍천군 내면 (600m), 두촌면(300m)에서 조사 한 결과 연 2~3회 발생하며, 초발생은 5월 중순경 으로 옥수수 가해 시기는 주로 7~8월 경 이삭이 여물기시작하는 시점이었다. 즉, 다 른 기주에서 살다가 이삭이 여물기 시작하기 전 산란하여 가해하는 양상을 보였다. 추천 농도에서 95% 이상 방제가를 보인 약제는 indoxacarb, spinosad, emamectin benzoate 등이었다. 이러한 결과는 종합적인 왕담배나방 방제 체계 구축에 반드시 필요 할 것으로 사료된다.
Recently, consumption of magnesium alloys has increased especially in the 3C (computer, communication, camera) and automobile industries. The structural application of magnesium alloys has many advantages due to their low densities, high specific strength, excellent damping and anti-eletromagnetic properties, and easy recycling. However, practical application of these alloys has been limited to narrow uses of mild condition, because they are inferior in corrosion resistance and wear resistance due to their high chemical reactivity and low hardness. Various wet and dry processes are being used or are under development to enhance alloy surface properties. Various conversion coating and anodizing methods have been developed in a view of eco-friendly concept. The conventional technologies, such as diffusion coating, sol-gel coating, hydrothermal treatment, and organic coating, are expected to be newly applicable to magnesium alloys. Surface treatments for metallic luster or coloring are suggested using the control of the micro roughness. This report reviews the recent R&D trends and achievements in surface treatment technologies for magnesium alloys.
Hydrogen is in the spotlight as an alternative next generation energy source for the replacement of fossil fuels because it has high specific energy density and emits almost no pollution, with zero CO2 emission. In order to use hydrogen safely, reliable storage and transportation methods are required. Recently, solid hydrogen storage systems using metal hydrides have been under extensive development for application to fuel cell vehicles and fuel cells of MCFC and SOFC. For the practical use of hydrogen on a commercial basis, hydrogen storage materials should satisfy several requirements such as 1) hydrogen storage capacity of more than 6.5wt.% H2, moderate hydrogen release temperature below 100˚C, 3) cyclic reversibility of hydrogen absorption/desorption, 4) non toxicity and low price. Among the candidate materials, Li based metal hydrides are known to be promising materials with high practical potential in view of the above requirements. This paper reviews the characteristics and recent R&D trends of Li based complex hydrides, Li-alanates, Li-borohydrides, and Li-amides/imides.