실리콘이 주입된 CaAs 기판위에 플라즈마 화학 증착법으로 자기정렬 gate구조의 Schottky contact을 형성하였다. 갈륨비소 소자 제조를 위하여 두께 1600Å의 턴스텐질화막을 350˚C에서 증착하여 750˚C에서 900˚C까지 급속 열처리 하였다. 텅스텐 질화막과 GaAs계면의 열적 안정성을 XRD(X-ray diffraction), PL(photoluminescence),ODLTS(optical deep livel transient spectroscopy)측정으로 조사하였으며, W보다 W67N33 gate를 형성시킬 경우에 GaAs에 미치는 열적손상이 적음을 알 수 있으며 이온 주입한 Si이온이 활성화 되는 것으로 생각된다. W67N33 GaAs 다이오드가 약 800-900˚C의 고온열처리 온도에서 W/GaAs 다이오드의 경우보다 열적 안정성이 우수하였다.
베아링강(AISI S2100) 위에 TiCi4, N2,H2,그리고 Ar의 기체혼합계를 이용하여 플라즈마화학증착법으로 내마모 TiN증착층을 얻었다. 증착된 TiN층 내의 잔류 CI에 의한 결정성, 미소경도, 접착력, 그리고 마모특성에 대해 연구하였다. TiN 중착층은 좋은 내마모성을 가지고 있었으며, TiN의 기계적 특성은 잔류CI함량이 증가할때 나빠졌다. 마모측정결과 마모면의 trailing edge에 인장응력이 걸려 많은 crack이 관찰되엇다.
SOG박막 밑에 층간 절연박으로 사용하는 PECVD산화막을 Si rich산화막으로 만들어 줌으로써 실리콘 dangling bond가 수소원자나 수분과 결합하여 SOG박막으로 부터 침투되는 수소원자나 수분의 확산을 억제하므로서 소작 열화되는 것을 방지한다. 이러한 Si rich산화막의 기본 특성을 알아보기 위하여 LF/HF power비와 SiH4/N2O gas유량비를 변화시켜서 박막 특성을 조사하였다. 저주파 power만 변화시킨 경우, 증착속도가 감소하고 굴절율과 압축응력에 증가하며 FTIR에서 3300cm-1~3800cm-1영역의 수분에 의한 peak이 감소하는 것으로 보아 박막이 치밀해짐을 알 수 있고, SiH4기체유량을 증가시킨 경우엔 증착속도, 굴절율, 식각속도는 증가하나 압축응력은 감소한다. FTIR에서 Si-O-Si peak의 세기가 감소하고 낮은 파수영역으로 이동하며, AES분석 결과에서 일반적인 oxide(Si:0=1:1.98)에서 보다 Si:O비가 1:1.23으로 낮아 PECVD산화 막내의 Si danling bond가 증가했음을 알 수 있었다.
전면증착법에 의한 W공정에서 부착특성고양층으로 사용되는 TiN막에 대한 CVD W막의 부착특성을 인장법(pulling method)과 스크래치법(scratch method)을 사용하여 조사하고, 주사전자현미경과 반사도측정에 의한 표면거칠기측정, 응력측정 및 SIMS depth profiling 등에 의하여 그 원인을 분석하였다. 스퍼터링법으로 형성한 TiN막상에 바로 W막을 증착한 경우와 TiN막을 열처리한 후에 W막을 증착한 경우 간에 두 막간의 부착특성은 큰 차이를 보였다. 전자의 경우가 후자의 경우보다 부착특성이 더 우수한 것으로 나타났는데, 이것은 열처리하지 않은 TiN막이 열처리한 TiN막에 비해 표면이 더 거칠고, 응력수준이 더 낮으며, 열처리한 TiN막내에는 산소성분이 존재하는 반면, 열처리 하지 않은 TiN막내에는 산소성분이 거의 들어있지 않기 때문이다. 또한 TiN막 두께가 증가함에 따라 응력의 증가로 인하여 TiN막에 대한 W막의 부착강도가 저하되었다.
A site 복합 페로브스카이트 구조인 (Na1/2 La1/2)TiO3 세라믹스의 고주파 유전특성을 조사하였다. 1000˚C에서 4시간 하소하고 1350˚ ~ 1450˚C에서 소결했을 때 치밀한 소결체가 되었다. NLT의 겉보기 밀도는 4.95g/cm3, 상대밀도는 96.4%였으며, 격자상수(a)가 3.873Å인 단순 입방정 구조였다. NLT의 유전율은 밀도가 높아짐에 따라 증가하였고 품진계수 Q는 평균 결정립 크기가 커짐에 따라 증가하였다. 1400˚C에서 4시간 소결한 NLT는 εr=125, Q=2842(fo=3 GHz), τf=465의 유전특성을 나타내었다.
기본조성 52.5mol% Fe2O3, 25.5mol% MnO, 22mol% ZnO로 구성된 Mn-Zn페라이트에 Bi2O3 및 CaCO3을 각각 0.02, 0.05wt%첨가한 시편에 대해서 Ta2O5,ZrO2및 SiO2의 미량 첨가한 따른 미세구조와 자기적 특성변화를 조사하였다. Ta2O5,ZrO2첨가에 따라 결정립 크기가 감소되었고, 전기시 균일한 입자로 형성된 미세구조를 가진 재료를 얻었다. SiO2첨가에 따라 결정립의 이상성장이 관찰되었고 소결밀도, 전기저항, 초투자율은 감소하고 고주파 영역에서 상대손실이 증가되었다. 본 연구결과 초투자자율은 균일한 결정립에서 최대의 값을 가지며 0.02wt%Bi2O3, 0.05wt%CaCO3, 0.1wt%Ta2O5 첨가시편의 경우 10kHz, 25˚C에서 초투자율(μI)은 6260이고 상대손실 계수(tanδ /μI)는 4.2 × 10-6 인 높은 투자율과 낮은 손실 특성을 가진 자성재료를 얻었다.
본 연구는 가시부 전영역에 감광하는 전자사진용 감광체를 만들기 위하여 400nm부근에 흡수파장을 갖는 sunfast yellow와 700nm부근에 흡수파장을 갖는 α,β-copperphthalocyanine의 색소를 산화아연(ZnO)에 흡착분산시켰다. 각종 결합제(Binder)의 감도와 , 산화아연과 결합제와의 조성비에 따르는 변화실험의 결과 5.5:1에서 가장 좋은 결과를 나타냈다. 전자사진 감광체의 적합성을 확인하기 위하여 정전특성과 분광감도를 측정해 본 결과 sunfast yellow와 β-copper phthalocyanine을 혼합사용한 것이 가장 좋은 감도를 나타냈으며, 이 때 측정된 전자시진감도는 E1:2=1440 luxㆍsec이었다. 또한 분광감도 측정결과는 가시부전역에 걸쳐 감도를 감광체임을 확인하였다.
다구찌의 실험계획기법을 이용하여 탄소섬유/페놀수지의 결화싸이클을 연구하였다. 본 연구에서는 1인자 2수준과 7인자 3수준으로 구성된 L18(21 × 37) 직교배열표를 사용하였고, 특성치로 굴곡강도와 기공률을 선정하여 실험하였다. 실험계획법의 압축성형 인자로는 8개의 성형인자(승온속도, 가압온도, 성형압력, 경화온도, 경화온도에서의 유지시간, 냉각속도 및 탈기포)가 고려되었으며, 이들 성형인자가 탄소섬유/페놀수지 복합재료의 물성에 미치는 영향을 고찰하였다. 분산분석법으로 실험결과를 분석한 결과, 탄소섬유/패놀수지 복합재료의 굴곡강도에 가장 큰 영향을 미치는 성형인자는 성형압력이고, 기공률에 가장 큰 영향을 미치는 성형인자는 경화온도임이 밝혀졌다.
니켈-흑연 복합분말은 고온 고압하에서 수소개스를 사용하여 ammoniacal황산니켈염 수용액으로 부터 니켈이온을 흑연코어표면에 석출시켜 제조하였으며, SEM. X-선 회절분석, 입도 및 화학분석 등을 이용하여 환원속도 및 니켈코팅층의 특성에 미치는 코팅 촉매제 Anthraquinone(C6H4COC6H4 CO) 의 영향을 조사하였다. 코팅촉매제의 입도 및 첨가량 변호에 따라 수소개스 주입 후 환원반응이 시작되기 까지 필요한 잠복기는 22~70분 정도 이었으며, 흑연코어 표면의 니켈코팅층은 포도송이 모양(botryoidal)인 미립의 니켈 nodule(2-4μm)로 형성되었다. 또한 코팅촉매제의 첨가량이 증가함에 따라 코팅용액중 니켈이온의 환원속도는 증가하여 0.2gr/ℓ첨가시 4.5gr/ℓ/min를 나타내었다.
TiC 입자를 강화재로 한 AI금속기지 복합재료를 액상교반법으로 제조하는데 따른 제조조건과 물성특성과의 관계를 조사하였다. TiC 입자는 중량비 10%를 첨가하였으며, 젖음성을 향상시키기 위하여 1.5wt%의 Mg을 첨가하였다. TiC입자 첨가에 의하여 내마모 특성, 인장강도, 경도 등이 증가 되었으나 과도한 교반은 기계적 특성을 저하시켰다. 본 실험조건에서 교반 속도의 최적조건은 500rpm이었다. Wetting agent로서 첨가한 Mg은 기지에 고루 분산하였다.
초음파의 표면파의 전파특성을 이용하여 SCM440강의 고주파열처리의 정도에 따른 표면경화층의 깊이를 측정, 조사하였으며 침탄속도는 동일조직에서는 주파수에 관계없이 일정하였으나, 경화조직에서 경화되지 않은 조직에 비하여 표면파의 속도는 59m/s 늦었다. 강의 유효경화층깊이(d)와 표면파파장(λR)의 d/λR의 관계로부터 경화층의 ?이를 비파괴적으로 평가, 측정할 수 있었으며 침탄경화시킨 경우에서도 동일한 결과를 얻었다.
본 연구에서는 입계의 성질을 이용한 PTCR 재료에 입계 modifier로서 Bi2O3와 BN을 첨가하고 입계의 미세구조와 결함농도를 변화시켜 이에 따른 소결 및 전기적 특성변화를 TMA, XRD, 복합 임피던스방법 등을 이용하여 해석하였다. 실험 결과 Y이 도우핑된 BaTiO3 PTCR 재료에 Bi2O3를 첨가하였을때 약 0.1mol%까지 고용이 되는 것으로 밝혀졌다. Bi2O3를 고용한계 이하로 첨가시에는 생성되는 vacancy등의 결함으로 말미암아 Y-BaTiO3의 치밀화가 촉진되었으나, 그 이상 첨가하면 치밀화 뿐만 아니라 결정립 성장도 억제되었다.Bi2O3 결정립 내부에 Ba와 Ti vacancy가 동시에 생길 수 있어 고온저항이 높아짐을 알 수 있었다. BN은 BaTiO3에 고용이 되지 않는 것으로 밝혀졌으며 B2O/wub/3를 주성분으로한 액상형성으로 인하여 저온에서의 급격한 치밀화가 관찰되었다. 또 Ba-Y-Ti-B-O의 비정질 상이 tripie junction에 존재함으로서 상온저항이 크게 변화하였으며, PTCR jump도 높아졌다.
본 연구에서는 입계의 성질을 이용한 PTCR 재료에 입계 modifier로서 Bi2O3를 첨가하고 입계의 미세구조와 결함농도를 변화시켜 이에 따른 소결 및 전기적 특성변화를 TMA, XRD, 복합 임피던스방법 등을 이용하여 해석하였다. 실험 결과 Y이 도우핑된 BaTiO3PTCR 재료에 Bi2O3를 첨가하였을때 약 0.1mol%까지 고용이 되는 것으로 밝혀졌다. Bi2O3를 고용한계 이하로 첨가시에는 생성되는 vacancy등의 결함으로 말미암아 Y-BaTiO3의 치밀화가 촉진되었으나, 그 이상 첨가하면 치밀화 뿐만 아니라 결정립 성장도 억제되었다. Bi2O3의 첨가량에 따라 계내에 존재하는 각 이온의 반경, 결함 반응식 및 격자 탄성 변형 에너지 등을 고려하면 Y-BaTiO3결정립 내부에 Ba와 Ti vacancy가 동시에 생길 수 있어 고온저항이 높아짐을 알 수 있었다. BN은 BaTiO3에 고용이 되지 않는 것으로 밝혀졌으며 B2O3를 주성분으로한 액상형성으로 인하여 저온에서의 급격한 치밀화가 관찰되었다. 또 Ba-Y-Ti-B-O의 비정질 상이 tripie junction에 존재함으로써 상온저항이 크게 변화하였으며, PTCR jump도 높아졌다.