간행물

한국재료학회지 KCI 등재 SCOPUS Korean Journal of Materials Research

권호리스트/논문검색
이 간행물 논문 검색

권호

제27권 제3호 (2017년 3월) 9

1.
2017.03 구독 인증기관 무료, 개인회원 유료
Isosteric heat of hydrogen adsorption is one of the most important parameters required to describe solid-state hydrogen storage systems. Typically, it is calculated from adsorption isotherms measured at 77K (liquid N2) and 87K (liquid Ar). This simple calculation, however, results in a high degree of uncertainty due to the small temperature range. Therefore, the original Sievert type setup is upgraded using a heating and cooling device to regulate the wide sample temperature. This upgraded setup allows a wide temperature range for isotherms (77K ~ 117K) providing a minimized uncertainty (error) of measurement for adsorption enthalpy calculation and yielding reliable results. To this end, we measure the isosteric heats of hydrogen adsorption of two prototypical samples: activated carbon and metal-organic frameworks (e.g. MIL-53), and compared the small temperature range (77~87K) to the wide one (77K ~ 117K).
4,000원
2.
2017.03 구독 인증기관 무료, 개인회원 유료
We synthesized potassium hexatitanate, (K2Ti6O13, PT6), with a non-fibrous shape, by acid leaching and subsequent thermal treatment of potassium tetratitanate (K2Ti4O9, PT4), with layered crystal structure. By controlling nucleation and growth of PT4 crystals, we obtained splinter-type crystals of PT6 with increased width and reduced thickness. The optimal holding temperature for the layered PT4 was found to be ~920 oC. The length and width of the PT4 crystals were increased when the nucleation and growth time were increased. After a proton exchange reaction using aqueous 0.3 M HCl solution, and subsequent heat treatment at 850 oC, the PT4 crystal transformed into splinter-type PT6 crystals. The frictional characteristics of the friction materials show that as the particle size of PT6 increases, the coefficient of friction (COF) and wear amounts of both the friction materials and counter disc increase.
4,000원
3.
2017.03 구독 인증기관 무료, 개인회원 유료
Boron-doped diamond (BDD) electrode has an extremely wide potential window in aqueous and non-aqueous electrolytes, very low and stable background current and high resistance to surface fouling due to weak adsorption. These features endow the BDD electrode with potentially wide electrochemical applications, in such areas as wastewater treatment, electrosynthesis and electrochemical sensors. In this study, the characteristics of the BDD electrode were examined by scanning electron microscopy (SEM) and evaluated by accelerated life test. The effects of manufacturing conditions on the BDD electrode were determined and remedies for negative effects were noted in order to improve the electrode lifetime in wastewater treatment. The lifetime of the BDD electrode was influenced by manufacturing conditions, such as surface roughness, seeding method and rate of introduction of gases into the reaction chamber. The results of this study showed that BDD electrodes manufactured using sanding media of different sizes resulted in the most effective electrode lifetime when the particle size of alumina used was from 75~106 μm (#150). Ultrasonic treatment was found to be more effective than polishing treatment in the test of seeding processes. In addition to this, BDD electrodes manufactured by introducing gases at different rates resulted in the most effective electrode lifetime when the introduced gas had a composition of hydrogen gas 94.5 vol.% carbon source gas 1.6 vol.% and boron source gas 3.9 vol.%.
4,000원
4.
2017.03 구독 인증기관 무료, 개인회원 유료
The effects of an excess of Bi on the piezoelectric and dielectric properties of 0.60Bi1+xFeO3-0.40BaTiO3 (x = 0, 0.01, 0.03, 0.05, 0.07) were investigated. The ceramics were processed through a conventional solid state reaction method and then quenched after sintering at different temperatures in the range of 980~1070 oC. A single perovskite structure without any secondary phase was confirmed for all compositions and temperatures. It was found that excess Bi reduced the sintering temperatures, acted as a sintering aid and enhanced the properties in combination with quenching. Curie temperature (TC) was found to slightly increase due to the presence of excess Bi; electrical properties were also improved by quenching. At x = 0.03 and 1030 oC, remnant polarization (2Pr) was as high as 45.4 μC/cm2 and strain at 40 kV/cm was up to 0.176 %.
4,000원
5.
2017.03 구독 인증기관 무료, 개인회원 유료
Transparent conducting oxides (TCOs) were fabricated using solution-based ITO (Sn-doped In2O3) nanoinks with nanorods at an annealing temperature of 200 oC. In order to optimize their transparent conducting performance, ITO nanoinks were composed of ITO nanoparticles alone and the weight ratios of the nanorods to nanoparticles in the ITO nanoinks were adjusted to 0.1, 0.2, and 0.5. As a result, compared to the other TCOs, the ITO TCOs formed by the ITO nanoinks with weight ratio of 0.1 were found to exhibit outstanding transparent conducting performance in terms of sheet resistance (~102.3 Ω/square) and optical transmittance (~80.2%) at 550 nm; these excellent properties are due to the enhanced Hall mobility induced by the interconnection of the composite nanorods with the (440) planes of the short lattice distance in the TCOs, in which the presence of the nanorods can serve as a conducting pathway for electrons. Therefore, this resulting material can be proposed as a potential candidate for solution-based TCOs for use in optoelectronic devices requiring large-scale and low-cost processes.
4,000원
6.
2017.03 구독 인증기관 무료, 개인회원 유료
Doped-LaCrO3 perovskites, because of their good electrical conductivity and thermal stability in oxidizing and/or reducing environments, are used in high temperature solid oxide fuel cells as a gas-tight and electrically conductive interconnection layer. In this study, perovskite (La0.8Ca0.2)(Cr0.9Co0.1)O3 (LCCC) coatings manufactured by atmospheric plasma spraying followed by heat treatment at 1200 oC have been investigated in terms of microstructural defects, gas tightness and electrical conductivity. The plasma-sprayed LCCC coating formed an inhomogeneous layered structure after the successive deposition of fully-melted liquid droplets and/or partially-melted droplets. Micro-sized defects including unfilled pores, intersplat pores and micro-cracks in the plasma-sprayed LCCC coating were connected together and allowed substantial amounts gas to pass through the coating. Subsequent heat treatment at 1200 oC formed a homogeneous granule microstructure with a small number of isolated pores, providing a substantial improvement in the gas-tightness of the LCCC coating. The electrical conductivity of the LCCC coating was consequently enhanced due to the complete elimination of inter-splat pores and microcracks, and reached 53 S/cm at 900 oC.
4,000원
7.
2017.03 구독 인증기관 무료, 개인회원 유료
In this paper, synthesis of terephthalate intercalated Zn-Al: Layered double hydroxides (LDHs) was studied. We designed freestanding Zn-Al: carbonate LDH nanosheets for a facile exchange technique. The as-prepared Zn-Al carbonate LDHs were converted to terephthalate intercalated Zn-Al:LDHs by ion exchange method. Initially, Al-doped ZnO (AZO) thin films were deposited on p-Si (001) by facing target sputtering. For synthesis of free standing carbonate Zn-Al:LDH, we dipped the AZO thin film in naturally carbonated water for 3 hours. Further, Zn-Al: carbonate LDH nanosheets were immersed in terepthalic acid (TA) solution. The ion exchange phenomena in the terephthalate assisted Zn-Al:LDH were confirmed using FTIR analysis. The crystal structure of terephthalate intercalated Zn-Al:LDH was investigated by XRD pattern analysis with different mole concentrations of TA solution and reaction times. The optimal conditions for intercalation of terephthalate from carbonated Zn-Al LDH were established using 0.3 M aqueous solution of TA for 24 hours.
4,000원
8.
2017.03 구독 인증기관 무료, 개인회원 유료
Removal of phosphate from environmental water has become more important to prevent eutrophication. In the present study, sorption behavior of phosphate onto magnesite was investigated under different conditions. The optimum pH of phosphate adsorption was determined to be 6.0. The adsorption capacity was found to decrease with increasing temperature, which indicates that a low temperature was beneficial for phosphate adsorption. The sorption capacity for phosphate was found to be 10.2 mg/g at an initial concentration of 100 mg/L and a dose of 2 g/L. The first order kinetic equation and Freundlich isotherm model fit the data well. Phosphate adsorption on magnesite was explained by electrostatic attraction and weak physical interactions.
4,000원
9.
2017.03 구독 인증기관 무료, 개인회원 유료
The aim of this study is to consider the effect hydrogen on dezincification behavior of Cu-Zn alloys. The investigations include microstructural observations with scanning electron microscope and chemical composition analysis with energy dispersive spectrometer. The dezincification layer was found to occur in high pressure hydrogen atmosphere, not in air atmosphere. In addition, the layers penetrated into the inner side along the grain boundaries in the case of hydrogen condition. The shape of the dezincification layers was porous because of Zn dissolution from the α or β phase. In the case of stress corrosion cracks formed in the Cu-Zn microstructure, the dezincification phenomenon with porous voids was also accompanied by grain boundary cracking.
4,000원