This study aimed to grow single crystals with low dislocation density using a heat exchange method using room temperature water, and investigated the effect of the structure of the heat exchanger under the crucible on the defects and dislocation density of the single crystals and the shape of the solid-liquid interface of the crystals, and obtained the following conclusions. The dislocation density of sapphire single crystal grown at 2,200℃ for 30 min and a growth rate of 0.2℃/min was 0.92x103pcs/㎠. Mo guard was used to stabilize the solid-liquid interface grown from seeds, and sapphire single crystals with a diameter of 130㎜ and a height of 75㎜ were grown.
To improve light absorption ability in the visible light region and the efficiency of the charge transfer reaction, Pd nanoparticles decorated with reduced TiO2 nanotube photocatalyst were synthesized. The reduced TiO2 nanotube photocatalyst was fabricated by anodic oxidation of Ti plate, followed by an electrochemical reduction process using applied cathodic potential. For TiO2 photocatalyst electrochemically reduced using an applied voltage of -1.3 V for 10 min, 38% of Ti4+ ions on TiO2 surface were converted to Ti3+ ion. The formation of Ti3+ species leads to the decrease in the band gap energy, resulting in an increase in the light absorption ability in the visible range. To obtain better photocatalytic efficiency, Pd nanoparticles were decorated through photoreduction process on the surface of reduced TiO2 nanotube photocatalyst (r10-TNT). The Pd nanoparticles decorated with reduced TiO2 nanotube photocatalyst exhibited enhanced photocurrent response, and high efficiency and rate constant for aniline blue degradation; these were ascribed to the synergistic effect of the new electronic state of the TiO2 band gap energy induced by formation of Ti3+ species on TiO2, and by improvement of the charge transfer reaction.