간행물

한국재료학회지 KCI 등재 SCOPUS Korean Journal of Materials Research

권호리스트/논문검색
이 간행물 논문 검색

권호

제18권 제5호 (2008년 5월) 10

1.
2008.05 구독 인증기관 무료, 개인회원 유료
Porous Ti implant samples were fabricated by the sintering of spherical Ti powders in a high vacuum furnace. To increase their surface area and biocompatibility, anodic oxidation and a hydrothermal treatment were then applied. Electrolytes in a mixture of glycerophosphate and calcium acetate were used for the anodizing treatment. The resulting oxide layer was found to have precipitated in the phase form of anatase TiO2 and nano-scaled hydroxyapatite on the porous Ti implant surface. The porous Ti implant can be modified via an anodic oxidation method and a hydrothermal treatment for the enhancement of the bioactivity, and current multi-surface treatments can be applied for use in a dental implant system.
4,000원
2.
2008.05 구독 인증기관 무료, 개인회원 유료
This paper presents results and observations obtained from a study of the optical and thermal properties of alkali tellurite depending on the composition. Fourier transform infrared (FT-IR) spectra showed evidence of chemical modification from TeO4 trigonal bipyramids (tbp) to TeO3 trigonal pyramids (tp) in tellurite glasses. The optical band gaps of the different glass samples calculated using Tauc's method were found to range from 3.5-3.8 eV. The glass transition temperature (Tg) and glass stability (δT) of alkali tellurite glasses were investigated, as M2O [M: Li, Na, K] amounted to 25 mol%, through the use of differential thermal analysis (DTA). The coefficient of thermal expansion (CTE) was measured in a thermo mechanical analysis (TMA) with a slow heating rate after the glass samples were annealed. The results confirm that the optical band gap of alkali tellurite glasses depends on the Te-O-Te structural relaxation related to the ratio of bridging/non bridging oxygen (BO/NBO). In contrast, the thermal properties are related to the ionic field strength of the Te-O-M and M-O-M bonds, and the Te-O-Te breakage depends on the ratio of BO/NBO.
4,000원
3.
2008.05 구독 인증기관 무료, 개인회원 유료
Pure Mg and Mg-6wt.%Al alloy were coated by the plasma electrolytic oxidation with various coating times and the microstructural and mechanical characteristics of the coatings were investigated. The coatings on pure Mg and Mg-6wt.%Al alloy consisted of MgO and Mg2SiO4. The surface roughness and thickness of the coatings became larger as the coating time increased. The coatings on the Mg-6wt.%Al alloy were more uniform and thicker than those on pure Mg. The microhardness and friction coefficient of the coatings increased progressively as the coating time increased. In addition, the coatings on the Mg-6wt.%Al alloy compared to pure Mg showed improved microhardness and a better friction coefficient.
4,000원
4.
2008.05 구독 인증기관 무료, 개인회원 유료
A laser glass cutting system using a femto-second laser was evaluated for Flat Panel Display (FPD) glass. A theoretical analysis of the ablation threshold and depth is described using an explicit analytic form. Experiments for clean and deep grooves were performed using a 3W femto-second laser, and the relationships between the input energy and the scribing depth as well as the threshold energy are presented. Mechanical breaking after the scribing process was carried out and the results are compared with a theoretical method. It was found that a two-sided LCD panel glass can be cut clearly using the laser cutting method. The methodology was found to be very effective as a mass-production cutting system.
4,000원
5.
2008.05 구독 인증기관 무료, 개인회원 유료
A simple method to deposit carbon nanotube films uniformly on large area substrates using an arc discharge method is reported in this paper. The arc discharge method was modified to deposit carbon nanotube films in situ on the substrates. The substrates were scanned several times over the arcing point for a uniform film thickness. Deposition was carried out under variable dc bias conditions at 600 torr of H2 gas. The thickness uniformity of the single-wall carbon nanotube films as characterized by a four-point probe was within 30% deviation. The morphology and crystal quality of the single-wall carbon nanotube film were also characterized by field emission scanning electron microscopy and Raman spectroscopy.
4,000원
6.
2008.05 구독 인증기관 무료, 개인회원 유료
The corrosion and degradation factors of a current collector in a molten carbonate fuel cell (MCFC) were investigated to determine the optimized coating thickness of nickel on STS316L. The results show that the surface morphology and electrical properties depended on the nickel coating thickness. The surface morphology gradually changed from a flat to a porous structure along as the nickel coating thickness decreased, and the electrical resistance of the nickel-coated STS316L increased as the nickel coating thickness decreased. This can be attributed to the diffusion of elements of Fe and Cr from the substrate through the nickel grain boundaries. Additionally, carburization in the metal grains or grain boundaries in an anodic environment was found to influence the electrical properties due to matrix distortion. The resistance of Cr-oxide layers formed in an anodic environment causes a drop in the potential, resulting in a decrease in the system efficiency.
4,000원
7.
2008.05 구독 인증기관 무료, 개인회원 유료
Magnesium alloys are alloyed with rare earth elements (Re, Ca, Sr) due to the limited use of magnesium in high-temperature conditions. In this study, the influences of Zr and Zn on the aging behavior of a Mg-Nd-Y alloy were investigated. magnesium alloys containing R.E elements require aging treatments Specifically, Nd, Y and Zr are commonly used for high-temperature magnesium alloys. Various aging treatments were conducted at temperatures of 200, 250 and 300˚C for 0.5, 1, 3, 6, and 10 hours in order to examine the microstructural changes and mechanical properties at a high temperature (150˚C). Hardness and high-temperature (150˚C) tensile tests were carried out under various aging conditions in order to investigate the effects of an aging treatment on the mechanical properties of a Mg-3.05Nd-2.06Y-1.13Zr-0.34Zn alloy. The maximum hardness was 67Hv; this was achieved after aging at 250˚C for 3 hours. The maximum tensile, yield strength and elongation at 150˚C were 237MPa, 145MPa and 13.6%, respectively, at 250˚C for 3 hours. The strengths of the Mg-3.05Nd-2.06Y-1.13Zr-0.34Zn alloy increased as the aging time increased to 3 hours at 250˚C This is attributed to the precipitation of a Nd-rich phase, a Zr-rich phase and Mg3Y2Zn3.
4,000원
8.
2008.05 구독 인증기관 무료, 개인회원 유료
In submicron MOSFET devices, maintaining the ratio between the channel length (L) and thechannel depth (D) at 3:1 or larger is known to be critical in preventing deleterious short-channel effects. Inthis study, n-type SOI-MOSFETs with a channel length of 0.1µm and a Si film thickness (channel depth) of0.033µm (L:D=3:1) were virtually fabricated using a TSUPREM-4 process simulator. To form functioningtransistors on the very thin Si film, a protective layer of 0.08µm-thick surface oxide was deposited prior tothe source/drain ion implantation so as to dampen the speed of the incoming As ions. The p-type boron dopingconcentration of the Si film, in which the device channel is formed, was used as the key variable in the processsimulation. The finished devices were electrically tested with a Medici device simulator. The result showedthat, for a given channel doping concentration of 1.9~2.5×1018cm−3, the threshold voltage was 0.5~0.7V, andthe subthreshold swing was 70~80mV/dec. These value ranges are all fairly reasonable and should form a‘magic region’ in which SOI-MOSFETs run optimally.
4,000원
9.
2008.05 구독 인증기관 무료, 개인회원 유료
The effects of the field emission property in relation to the surface morphology and adhesion force were investigated. The single-wall-nanotube-based cathode was obtained by use of an in-situ arc discharge synthesis method, a screen-printing method and a spray method. The morphologies of the formed emitter layers were very different. The emission stability and uniformity were dramatically improved by employing an in-situ arc discharge synthesis method. In this study, it was confirmed that the current stability and uniformity of the field emission of the cathode depend on the surface morphology and adhesion force of the emitters. The current stability of the field emission device was also studied through an electrical aging process by varying the current and electric field.
4,000원
10.
2008.05 구독 인증기관 무료, 개인회원 유료
The effect of sintering aids and glass-frit on the densification and resistivity of silver paste was investigated in an effort to enhance the sintered density and electrical conductivity of the silver electrode. To prepare Pb-free silver paste for use at low sintering temperatures, two commercial silver powders (0.8 μm and 1.6 μm in size) and 5wt.% lab-synthesized nanoparticles (30-50 nm in size) as a sintering aids were mixed with 3 wt.% or 6 wt.% of glass frit (Bi2O3-based) using a solvent and three roll mills. Thick films from the silver paste were prepared by means of screen printing on an alumina substrate followed by sintering at 450˚C to 550˚C for 15 min. Silver thick films from the paste with bimodal particles showed a high packing density, high densification during sintering and low resistivity compared to films created using monomodal particles. Silver nanoparticles as a sintering aid enhanced the densification of commercial silver powder at a low sintering temperature and induced low resistivity in the silver thick film. The glass frit also enhanced the densification of the films through liquid phase sintering; however, the optimum content of glass frit is necessary to ensure that a dense microstructure and low resistivity are obtained, as excessive glass-frit can provoke low conductivity due to the interconnection of the glass phase with the high resistivity between the silver particles.
4,000원