검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2010.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        For this paper, we investigated the area specific resistance (ASR) of commercially available ferritic stainless steels with different chemical compositions for use as solid oxide fuel cells (SOFC) interconnect. After 430h of oxidation, the STS446M alloy demonstrated excellent oxidation resistance and low ASR, of approximately 40 mΩcm2, of the thermally grown oxide scale, compared to those of other stainless steels. The reason for the low ASR is that the contact resistance between the Pt paste and the oxide scale is reduced due to the plate-like shape of the Cr2O3(s). However, the acceptable ASR level is considered to be below 100 mΩcm2 after 40,000 h of use. To further improve the electrical conductivity of the thermally grown oxide on stainless steels, the Co layer was deposited on the stainless steel by means of an electroless deposition method; it was then thermally oxidized to obtain the Co3O4 layer, which is a highly conductive layer. With the increase of the Co coating thickness, the ASR value decreased. For Co deposited STS444 with 2 μmhickness, the measured ASR at 800˚ after 300 h oxidation is around 10 mΩcm2, which is lower than that of the STS446M, which alloy has a lower ASR value than that of the non-coated STS. The reason for this improved high temperature conductivity seems to be that the Mn is efficiently diffused into the coating layer, which diffusion formed the highly conductive (Mn,Co)3O4 spinel phases and the thickness of the Cr2O3(S), which is the rate controlling layer of the electrical conductivity in the SOFC environment and is very thin
        4,000원
        2.
        2010.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Chromium nitride (CrN) samples with two different layer structures (multilayer and single layer) were coated on bipolar plates of polymer electrolyte membrane fuel cells (PEMFC) using the reactive sputtering method. The effects with respect to layer structure on corrosion resistance and overall cell performance were investigated. A continuous and thin chromium nitride layer (Cr0.48 N0.52) was formed on the surface of the SUS 316L when the nitrogen flow rate was 10 sccm. The electrochemical stability of the coated layers was examined using the potentiodynamic and potentiostatic methods in the simulated corrosive circumstances of the PEMFC under 80˚C. Interfacial contact resistance (ICR) between the CrN coated sample and the gas diffusion layer was measured by using Wang's method. A single cell performance test was also conducted. The test results showed that CrN coated SUS316L with multilayer structure had excellent corrosion resistance compared to single layer structures and single cell performance results with 25 cm2 in effective area also showed the same tendency. The difference of the electrochemical properties between the single and multilayer samples was attributed to the Cr interlayer layer, which improved the corrosion resistance. Because the coating layer was damaged by pinholes, the Cr layer prevented the penetration of corrosive media into the substrate. Therefore, the CrN with a multilayer structure is an effective coating method to increase the corrosion resistance and to decrease the ICR for metallic bipolar plates in PEMFC.
        4,000원
        3.
        2009.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Electrolessly deposited Co (Re,P) was investigated as a possible capping layer for Cu wires. 50 nm Co (Re,P) films were deposited on Cu/Ti-coated silicon wafers which acted as a catalytic seed and an adhesion layer, respectively. To obtain the optimized bath composition, electroless deposition was studied through an electrochemical approach via a linear sweep voltammetry analysis. The results of using this method showed that the best deposition conditions were a CoSO4 concentration of 0.082 mol/l, a solution pH of 9, a KReO4 concentration of 0.0003 mol/l and sodium hypophosphite concentration of 0.1 mol/L at 80˚C. The thermal stability of the Co (Re,P) layer as a barrier preventing Cu was evaluated using Auger electron spectroscopy and a Scanning calorimeter. The measurement results showed that Re impurities stabilized the h.c.p. phase up to 550˚C and that the Co (Re,P) film efficiently blocked Cu diffusion under an annealing temperature of 400˚C for 1hr. The good barrier properties that were observed can be explained by the nano-sized grains along with the blocking effect of the impurities at the fast diffusion path of the grain boundaries. The transformation temperature from the amorphous to crystal structure is increased by doping the Re.
        4,000원
        4.
        2008.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Through the electrostatic interaction between the poly-diallydimethylammonium chloride (PDDA) modified Multi-walled carbon nanotube (MWNT) and SnO2 suspension in 1mM NaNo3 solution, MWNT-SnO2 nanocomposites (MSC) for anode electrodes of a Li-ion battery were successfully fabricated by colloidal heterocoagulation method. TEM observation showed that most of the SnO2 nanoparticles were uniformly deposited on the outside surface of the MWNT. Galvanostatic charge/discharge cycling tests showed that MSC anodes exhibited higher specific capacities than bare MWNT and better cyclability than unsupported nano-SnO2 anodes. Also, after 20 cycles, the MSC anode fabricated by heterocoagulation method showed more stable cycle properties than the simply mixed MSC anode. These improved electrochemical properties are attributed to the MWNT, which adsorbs the mechanical stress induced from volume change and increasing electrical conductivity of the MSC anode, and suppresses the aggregation between the SnO2 nanoparticles.
        4,000원
        5.
        2008.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The corrosion and degradation factors of a current collector in a molten carbonate fuel cell (MCFC) were investigated to determine the optimized coating thickness of nickel on STS316L. The results show that the surface morphology and electrical properties depended on the nickel coating thickness. The surface morphology gradually changed from a flat to a porous structure along as the nickel coating thickness decreased, and the electrical resistance of the nickel-coated STS316L increased as the nickel coating thickness decreased. This can be attributed to the diffusion of elements of Fe and Cr from the substrate through the nickel grain boundaries. Additionally, carburization in the metal grains or grain boundaries in an anodic environment was found to influence the electrical properties due to matrix distortion. The resistance of Cr-oxide layers formed in an anodic environment causes a drop in the potential, resulting in a decrease in the system efficiency.
        4,000원
        6.
        2008.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Multi-walled carbon nanotube (MWNT)/SnO2 nano-composite (MSC) for the anode electrode of a Li-ion battery was prepared using a homogeneous precipitation method with SnCl2 precursors in the presence of MWNT. XRD results indicate that when annealed in Ar at 400˚C, Sn6O4(OH)4 was fully converted to SnO2 phases. TEM observations showed that most of the SnO2 nanoparticles were deposited directly on the outside surface of the MWNT. The electrochemical performance of the MSC electrode showed higher specific capacities than a MWNT and better cycleability than a nano-SnO2 electrode. The electrochemical performance of the MSC electrode improved because the MWNT in the MSC electrode absorbed the mechanical stress induced from a volume change during alloying and de-alloying reactions with lithium, leading to an increase in the electrical conductivity of the composite material.
        4,000원