Multi-walled carbon nanotube (MWNT)/SnO2 nano-composite (MSC) for the anode electrode of a Li-ion battery was prepared using a homogeneous precipitation method with SnCl2 precursors in the presence of MWNT. XRD results indicate that when annealed in Ar at 400˚C, Sn6O4(OH)4 was fully converted to SnO2 phases. TEM observations showed that most of the SnO2 nanoparticles were deposited directly on the outside surface of the MWNT. The electrochemical performance of the MSC electrode showed higher specific capacities than a MWNT and better cycleability than a nano-SnO2 electrode. The electrochemical performance of the MSC electrode improved because the MWNT in the MSC electrode absorbed the mechanical stress induced from a volume change during alloying and de-alloying reactions with lithium, leading to an increase in the electrical conductivity of the composite material.