To identify some significant phenotypic characteristics of maize(zea mays) seeds, we have obtained Red, Green, Blue(RGB) digital image data from 82 recombinant inbred lines. Based on the collected image data, their morphological and color data were analyzed, and seven significant parameters were selected, including area, perimeter, length, width, circularity, roundness, and surface texture. The extracted RGB data were converted into color hex codes to visualize the representative colors of the seeds. These visualized colors were categorized into six groups: gray, yellowish white, yellow, grayish orange, purple, and brown. The results of maize seed phenotypic analysis using the RGB digital images in this study will serve as a useful tool for constructing a database of seed phenotyping database and establishing a standardized classification system.
Chromium nitride (CrN) samples with two different layer structures (multilayer and single layer) were coated on bipolar plates of polymer electrolyte membrane fuel cells (PEMFC) using the reactive sputtering method. The effects with respect to layer structure on corrosion resistance and overall cell performance were investigated. A continuous and thin chromium nitride layer (Cr0.48 N0.52) was formed on the surface of the SUS 316L when the nitrogen flow rate was 10 sccm. The electrochemical stability of the coated layers was examined using the potentiodynamic and potentiostatic methods in the simulated corrosive circumstances of the PEMFC under 80˚C. Interfacial contact resistance (ICR) between the CrN coated sample and the gas diffusion layer was measured by using Wang's method. A single cell performance test was also conducted. The test results showed that CrN coated SUS316L with multilayer structure had excellent corrosion resistance compared to single layer structures and single cell performance results with 25 cm2 in effective area also showed the same tendency. The difference of the electrochemical properties between the single and multilayer samples was attributed to the Cr interlayer layer, which improved the corrosion resistance. Because the coating layer was damaged by pinholes, the Cr layer prevented the penetration of corrosive media into the substrate. Therefore, the CrN with a multilayer structure is an effective coating method to increase the corrosion resistance and to decrease the ICR for metallic bipolar plates in PEMFC.