Lead titanate박막을 Pt/Ti/SiO2/Si(Pt/Ti기판)와 Pt/Ta/SiO2/SiO2Si(Pt/Ta 기판) 위에서 전자 사이크로트론 공명플라즈마 화학증착법(ECR PECVD)으로 증착하였다. 증착온도, 산소유입량, MO source유입비등의 증착변수에 따른 lead titanate박막의 조성과 미세구조를 주사전자현미경(SEM), 투과전자현미경(TEM), X선 회절법(XRD)으로 조사하였다. 산소유입량이 적을 경우,Tisource와 Pb source의 산소화의 반응성 차이 때문에 Pb 농도가 부족한 화학양론비가 잘 맞는 박막이 증착되었다. Pt/ti기판은 lead titanate박막증착도중 기판의 Ti층과 Pt층의 확산으로 기판변형이 발생하는 반면, Pt/Ta기판은 기판변형이 일어나지 않았다. Pt/Ta기판에서 페롭스카이트 화학양론비를 갖는 매우 평탄한 lead titanate박막을 증착 하였는데, 산소유입량이 lead titanate박막의 결정성을 크게 지배하였다.
Ba(NO3)2와 TiCl4의 혼합 수용액으로부터 전기화학법 중 음극혼원법(cathodic reduction method)을 이용하여 stainless steel기판 위에 BaTiO3박막을 제조하였다. BaTiO3전구체 박막은 혼합 수용액으로부터 반응초기에 TiO2·nH2OM/형태로 우선적으로 형성되었으며, 일정 시간이 경과한 후에는 일정한 Ba/Ti몰비를 갖는 박막이 제조되었다. BaTiO3박막 내 Ba/Ti조성비는 혼합 수용액 내에 존재하는 이온 조성비 Ba2+/Ti4+에 변화하였는데, 0.3M Ba(NO3)2와 0.1M TiCI4의 혼합 수용액과 10mA/cm2의 전류를 흘려주는 조건에서 Ba/Ti의 조성비가 1에 가까운 박막을 얻을 수 있었다. 이러한 전구체 박막을 500˚C이상에서 열처리한 결고 페로브스카이트 상의 BaTiO3박막이 제조되었다.
이방성과 등방성을 갖는 두 종류의 피치계 탄소섬유를 TGA장치를 이용하여 CO2gas와 공기중에서 등온산화반응을 실시하였다. CO2 gas보다 공기중에서의 산화가 훨씬 빠르게 일어났으며, 600˚C공기중에서 등방성 T-10IS섬유는 이방성 HM-60섬유보다 23.9배나 빠른 산화속도를 보였다. 실험적으로 구한 활성화에너지를 저온에서 36-56Kcal/mole의 값을 가지며, 고온에서는 6-13Kcal/mole의 값을 나타내었다. 반응기구(zone 1,2,3)의 천이도는 T-10IS섬유보다 HM-60 섬유가 높았으며, 공기중에서보다 CO2 gas분위기에서 더 높게 나타났다. SEM으로 관찰된 표면상변화로부터 탄소섬유의 산화반응은 섬유의 결함을 따라 진행된다는 것을 알 수 있었다.
용탕단조법에 의해 제조된 Mg-6AI-xZn(x=0,1,2)합금의 기계적 성질에 미치는 시효열처리의 영향을 조사하였다. 주조상태에서의 미세조직은 초정 Mg고용체, 과포화된 상태의 Mg상, 응고과정에서 형성된 β(Mg17AI12)화합물 등 3개의 상으로 구성되어 있었다. 용체화처리 수 200˚C및 240˚C에서 시효열처리한 결과 Mg-6AI-xZn(x=0,1,2)합금은 β 석출물에 의한 피크 경도값이 나타났으며, 석출물의 형태는 200˚C에서는 lamella 형태의 불연속 석출물이, 240˚C에서는 미세분산분포된 연속석출물의 형태를 보였다. 용탕단조방법에 의해 제조된Mg-6AI-xZn합금의 기계적 성질은 사형주조법에 비해 인장강도 및 연신율에서 우수한 특성을 보였으며 Zn의 첨가량이 증가함에 따라 Zn의 고용강화 효과에 따라 강도값이 증가되었다.
증착법을 이용하여 Sm(Co1-xFex) 및 Sm2(Co1-xFex)17(X=0, 0.3,0.5,0.7)박막을 제작하여 조성변화 및 열처리 온도 변화에 따른 자기적 성질의 변화에 대해 검토 하였다. Fe의 양이 증가 할 수록 포화자화 값은 증가 하지만 각형비는 감소하였고 보자력도 약간 감소하는 경향을 보였다. Sm(Co0.5Fe0.5)5 조성박막의 경우, 800˚C, 20분 열처리에 의해 약 6.1MGOe의 (BH)max을 보였다. 본 박막자석의 자기적 성질의 증대를 위해서는 시료제작 방법의 개선이 필요하다고 사료 된다.
은 튜브에 장입되기 전의 초기 분말의 입자 크기가 Ag/Bi-2223초전도 선재의 미세구조와 상전이, 임계 전류 밀도등에 미치는 영향에 대해 고찰하였다. 분말의 입자 크기는 하소 분말을 볼밀을 이용하여 0-48 시간 동안 분쇄하여 조절하였다. 열처리 후 최종 초전도 선재의 전기적 성질은 초기 분말의 입자 크기에 영향을 받는 것으로 나타났으며 분말의 분쇄에 의한 반응성의 증가에 의해 열처리시 2223 상으로의 상전이가 빠르게 일어났고 이차상의 크기와 분율이 감소된 미세구조를 얻을 수 있었다. 그러나 과다한 분쇄에 의한 반응성의 증가에 의해 열처리시 2223상으로의 상전이가 빠르게 일어났고 이차상의 크기와 분율이 감소된 미세구조를 얻을 수 있었다. 그러나 과다한 분쇄는 분말의 비정질화를 유발하여 2223 상으로의 전이를 방해함으로써 선재의 임계 전류 밀도를 감소시키는 결과를 나타내었다.
AI-xSi/ySiC( x:6~18wt%, y: 3~9wt%, SiC 입자크기: 10~28μm) 복합재료를 재용해한 후 항온 유지하고 응고 시킬때 SiC 입자가 몰드의 하부로 침강하는 현상을 계통적으로 조사하였다. AI-Si/SiC 복합재료 용탕을 항온으로 유지하면 입자가 없는 지역은 유지시간이 약 처음 30분 동안 빠르게 증가한다. SiC 입자가 크기가 클수록 SiC입자의 크기가 클수록 SiC입자의 침강속도가 빠르다. 또한 복합재료중 철가한 SiC 입자의 부피분율이 증가하면 입자의 침강속도는 감소한다.
본 논문은 분쇄한 dickite의 메카노케미칼 효과에 관해서 연구한 것이다. 유성밀을 사용하여 분쇄한 dickite의 메카노케미칼 효과를 알아보기 위하여, 분쇄시간을 달리하여 얻어진 dickite에 대하여 시차열분속과 X선 동경분포함수를 이용하여 정밀구조분석을 하였다. 분쇄한 dickite에 대하여 동경분포함수 해석 결과, SiO4 사면체는 분쇄한 dickite내에서 국소단위구조로 그대로 잔류하고 있었다. 한편 AI-O의 배위수 및 원자간 거리는 분쇄시간의 증가에 따라 점점 감소하였고, 이에 대한 정량화가 가능했다. 이는 시차열분석 결과의 AI주위의 환경변화와 일치하였다. 따라서, 분쇄함에 따른 dickite의 메카노케미칼 현상은 AI주위의 환경변화에 기인된 것으로 볼 수 있다.