TiO2sol(30wt%, anatase)을 이용하여 스핀코팅으로 유리기판에 TiO2박막을 제조하였다. 박막의 두께는 코팅주기의 횟수가 조절하였다. 한 코팅주기는 스핀코팅, 건조, 열처리를 포함한다. 박막의 반응성은 막 위에서의 자외선강도가 0.44와 2.mW/cm2인 조건에서 벤젠기체의 광분해 속도를 통해 조사하였다. 박막의 두께가 증가할수록 표면적으로 증가로 인해 반응성은 증가하였으며, 0.44mW/cm2일 때 4μm정도 이상의 두께에서 반응성은 더 이상 증가되지 않았다. porous한 TiO2박막은 비교적 넓은 유효표면적을 가지고 있으며, 그것은 비교적 높은 자외선 강도하에서 박막두께에 따라 반응속도를 증가시키는 결과를 낳았다.
Metal/ferroelectric/insulator/semiconductor(MFIS)-Field Effect Transistor을 위한 Pt/YMnO3/Y2O3/Si 구조를 제조하여 MFIS 구조의 특성에 미치는 Y2O3박막의 영향을 고찰하였다. PLD법을 이용하여 p=type Si(111) 기판 위에 증착시킨 Y2O3박막은 증착온도와 관계없이 (111)방향으로의 우선배향성을 갖고 결정화 되었다. 실리콘 위에 바로 MOCVD법에 의해 강유전체 YMnO3박막을 증착시킨 경우 실리콘과의 계면에서 Mn이 부족한 층이 형성되지만 Y2O3가 실리콘과 YMnO3사이에 삽입된 경우는 Y2O3바로 위에서부터 화학양론비에 일치하는 양질의 YMnO3박막을 얻을 수 있었다. 850˚C, 100mtorr의 진공분위기에서 열처리한 YMnO3박막은 Y2O3가 삽입된 경우 memory window 값이 Y2O3가 삽입되지 않은 경우보다 더 큰 값을 보였으며 5V에서 1.3V의 값을 보였다.
Si(111) 표면을 NH3분위기에서 실리콘질화물(SiNx)로 변형시킨 후 탄화규소(silicon carbide, SiC) 박막을 성장하였다. 질화시간이 증가함에 따라 SiC 박막 두께가 감소함을 관찰하였다. 또한 성장변수에 따라 SiC/Si 계면에서 결정결함인 틈새를 없앨 수 있었다. 100nm, 300nm, 500nm의 SiNx/Si 기판 위에 SiC 박막을 성장시켰다. 성장된 SiC 박막들은 모두 [111]면을 따라 성장되었고, SiC 결정들이 원주형 낟알로 성장되었다. SiC/SiNx 계면에서 void를 관찰할 수 없었다. 이러한 실험 결과는 SOI 구조의 산화규소를 SiNx로 대체함으로써 SiC 소자 제작에 응용될 수 있는 방향을 제시하고 있다.
전자싸이클로트론공명-플라즈마 화학기상증착법으로 PbTiO3박막을 증착하였다. RuO2 기판과 Pt 기판 위에 금속유기화합물 원료기체 유량 및 증착온도에 따라서 PbTiO3박막의 증착특성을 연구하였다. RuO2 기판 위에서 Pt 기판에 비하여 Pb-oxide 분자의 잔류시간이 상대적으로 크고, 페로브스카이트 핵생성 밀도는 상대적으로 작으며, 단일한 페로브스카이트 상의 PbTiO3 박막을 얻을 수 있는 공정범위가 Pt 기판보다 좁았다. PbTiO3 박막 증착 전 Ti-oxide 씨앗층을 도입함으로써 RuO2 기판에서도 페로브스카이트 핵생성 밀도를 증가시켜 단일한 페로브스카이트 박막을 얻을 수 있는 공정범위가 확장되었다. PbTiO3에서 Ti 성분을 Zr으로 일부 대체시킨 Pb(Zr,Ti)O3 (PZT) 박막의 경우에도 Ti-oxide 씨앗층을 도입함으로써 넓은 공정범위에서 단일한 페로브스카이트 PZT 박막을 RuO2기판 위에서도 제조할 수 있었다.
반응성 이온 식각과 산화막을 이용한 첨예화 공정을 통하여 균일한 실리콘 팁 어레이를 제작한 후, 그 위에 Pd을 증착하여, Pd 코팅이 전계 방출특성에 미치는 영향에 대해 조사하였다. 어레이에 존재하는 표면 산화막을 제거한 후의 전계 방출 특성의 향상은 매우 작았으나, 100Å의 Pd을 코팅한 후에는 30V의 구동전압이 감소하는 등 전계 방출특성이 크게 향상되었다. 이는 Pd 코팅에 의해 팁의 표면 거칠기가 증가하고, 전자가 방출되는 팁 끝부분의 반경이 감소하였기 때문이다. 한편 Pd을 코팅한 에미터는 높은 방출 전류 영역에서 우수한 동작 안전성을 보였다. 이를 통하여 Pd이 코팅된 실리콘 에미터가 고온에서의 동작과 표면안정성에서 우수한 특성을 보임을 알 수 있었다.
샤피 V-노치 충격 하중-변위 곡선으로부터 얻은 균열정지하중을 이용하여 원자로압력용기강의 균열정지파괴인성(KIa)을 예측할 수 있는 방법을 모색하고 그 타당성을 고찰하였다. 샤피충격 하중-변위 곡선으로부터 얻은 균열정지하중값의 변화는 특성온도로 보정된 지수함수의 형태로 잘 표현될 수 있었다. 특성온도 TPa=2kN은 실험적인 무연성천이온도(TNDT) 및 T41 J과 높은 상관성을 나타냈으며, 원자로압력용기강의 균열정지파괴인성을 표현하는 새로운 특성온도로 사용할 수 있을 것으로 판단되었다. 또한 균열정지하중값의 변화는 파면으로부터 측정된 안정균열길이의 변화와 매우 높은 상관성을 나타내었다. 따라서 무딘 노치를 갖는 시편에 대한 계장화샤피충격시험을 통하여 균열정지하중 및 안정균열길이를 측정하믈써 비교적 정확하게 원자로압력용기강에 대한 하한값의 파괴인성치(KIa)를 평가하는 것이 가능한 것으로 판단되었다.
HIP처리가 가스터빈 고정익 등 고온부품에 적용되는 열차폐 코팅층의 접착강도 및 고온특성에 미치는 영향을 조사하였다. 시편은 IN738LC 초합금 표면에 8wt%Y2O3-ZrO2분말을 플라즈마 용사법으로 코팅한 후 1200˚C, 100MPa의 고온, 고압에서 4시간 동안 HIP 처리하여 준비하였다. 실험결과 HIP 처리된 코팅의 경우 미세균열과 기공이 상당량 감소하였으며 EDX분석을 통해 계면에서 원자간 상호확산이 발생한 것을 확인하였다. 이러한 코팅층의 치밀화 및 상호확산으로 인해 HIP처리된 코팅층의 접착강도는 48% 이상 크게 증가하였으며 조직 또한 균질화 되었다. 반면 가열과 냉각이 반복되는 환경에서 코팅층의 내구력은 HIP 처리된 경우가 다소 저하되었다. 이는 코팅과 모재와의 열팽창 차이로 인한 변형을 완화시켜주는 기공과 미세균열이 감소되었기 때문으로 판단된다.