간행물

한국재료학회지 KCI 등재 SCOPUS Korean Journal of Materials Research

권호리스트/논문검색
이 간행물 논문 검색

권호

제34권 제4호 (2024년 4월) 5

1.
2024.04 구독 인증기관 무료, 개인회원 유료
In this study, NASICON-type Li1+XGaXTi2-X(PO4)3 (x = 0.1, 0.3 and 0.4) solid-state electrolytes for all-solid-state batteries were synthesized through the sol-gel method. In addition, the influence on the ion conductivity of solid-state electrolytes when partially substituted for Ti4+ (0.61Å) site to Ga3+ (0.62Å) of trivalent cations was investigated. The obtained precursor was heat treated at 450 °C, and a single crystalline phase of Li1+XGaXTi2-X(PO4)3 systems was obtained at a calcination temperature above 650 °C. Additionally, the calcinated powders were pelletized and sintered at temperatures from 800 °C to 1,000 °C at 100 °C intervals. The synthesized powder and sintered bodies of Li1+XGaXTi2-X(PO4)3 were characterized using TGDTA, XRD, XPS and FE-SEM. The ionic conduction properties as solid-state electrolytes were investigated by AC impedance. As a result, Li1+XGaXTi2-X(PO4)3 was successfully produced in all cases. However, a GaPO4 impurity was formed due to the high sintering temperatures and high Ga content. The crystallinity of Li1+XGaXTi2-X(PO4)3 increased with the sintering temperature as evidenced by FE-SEM observations, which demonstrated that the edges of the larger cube-shaped grains become sharper with increases in the sintering temperature. In samples with high sintering temperatures at 1,000 °C and high Ga content above 0.3, coarsening of grains occurred. This resulted in the formation of many grain boundaries, leading to low sinterability. These two factors, the impurity and grain boundary, have an enormous impact on the properties of Li1+XGaXTi2-X(PO4)3. The Li1.3Ga0.3 Ti1.7(PO4)3 pellet sintered at 900 °C was denser than those sintered at other conditions, showing the highest total ion conductivity of 7.66 × 10-5 S/cm at room temperature. The total activation energy of Li-ion transport for the Li1.3Ga0.3Ti1.7(PO4)3 solidstate electrolyte was estimated to be as low as 0.36 eV. Although the Li1+XGaXTi2-X(PO4)3 sintered at 1,000 °C had a relatively high apparent density, it had less total ionic conductivity due to an increase in the grain-boundary resistance with coarse grains.
4,000원
2.
2024.04 구독 인증기관 무료, 개인회원 유료
In this study, the surfaces of two gold nanoparticles of different shapes were modified with hexadecyltrimethylammonium bromide (CTAB) and used for contact lenses. The polymer was based on 2-hydroxyethyl methacrylate (HEMA), and spherical and sea urchin-shaped gold nanoparticles were used as additives. CTAB was used to modify the surface of the sea urchin-shaped gold nanoparticles. To analyze the physical properties of the prepared contact lens, optical transmittance, refractive index, water content, contact angle, and atomic force microscope (AFM) were measured and evaluated. The results showed the nanoparticles did not significantly affect optical transmittance, refractive index, or water content of the lens, and tensile strength increased according to the ratio of the additive. The addition of the sea urchin-shaped nanoparticles resulted in lower wettability compared with the spherical nanoparticles, but somewhat superior tensile strength. In addition, it was found that the wettability of the lens was improved when the surface-modified sea urchin-shaped gold nanoparticles were added. The types of gold nanoparticles and surface modification methods used in this study are considered to have great potential for use in ophthalmic materials.
4,000원
3.
2024.04 구독 인증기관 무료, 개인회원 유료
In this study, we undertook detailed experiments to increase hydrogen production efficiency by optimizing the thickness of titanium dioxide (TiO2) thin films. TiO2 films were deposited on p-type silicon (Si) wafers using atomic layer deposition (ALD) technology. The main goal was to identify the optimal thickness of TiO2 film that would maximize hydrogen production efficiency while maintaining stable operating conditions. The photoelectrochemical (PEC) properties of the TiO2 films of different thicknesses were evaluated using open circuit potential (OCP) and linear sweep voltammetry (LSV) analysis. These techniques play a pivotal role in evaluating the electrochemical behavior and photoactivity of semiconductor materials in PEC systems. Our results showed photovoltage tended to improve with increasing thickness of TiO2 deposition. However, this improvement was observed to plateau and eventually decline when the thickness exceeded 1.5 nm, showing a correlation between charge transfer efficiency and tunneling. On the other hand, LSV analysis showed bare Si had the greatest efficiency, and that the deposition of TiO2 caused a positive change in the formation of photovoltage, but was not optimal. We show that oxide tunneling-capable TiO2 film thicknesses of 1~2 nm have the potential to improve the efficiency of PEC hydrogen production systems. This study not only reveals the complex relationship between film thickness and PEC performance, but also enabled greater efficiency and set a benchmark for future research aimed at developing sustainable hydrogen production technologies.
4,000원
4.
2024.04 구독 인증기관 무료, 개인회원 유료
To fabricate intermetallic nanoparticles with high oxygen reduction reaction activity, a high-temperature heat treatment of 700 to 1,000 °C is required. This heat treatment provides energy sufficient to induce an atomic rearrangement inside the alloy nanoparticles, increasing the mobility of particles, making them structurally unstable and causing a sintering phenomenon where they agglomerate together naturally. These problems cannot be avoided using a typical heat treatment process that only controls the gas atmosphere and temperature. In this study, as a strategy to overcome the limitations of the existing heat treatment process for the fabrication of intermetallic nanoparticles, we propose an interesting approach, to design a catalyst material structure for heat treatment rather than the process itself. In particular, we introduce a technology that first creates an intermetallic compound structure through a primary high-temperature heat treatment using random alloy particles coated with a carbon shell, and then establishes catalytic active sites by etching the carbon shell using a secondary heat treatment process. By using a carbon shell as a template, nanoparticles with an intermetallic structure can be kept very small while effectively controlling the catalytically active area, thereby creating an optimal alloy catalyst structure for fuel cells.
4,000원
5.
2024.04 구독 인증기관 무료, 개인회원 유료
Because collagen is inherently piezoelectric, research is being actively conducted to utilize it to harvest energy. In this study, a collagen solution was prepared using edible low-molecular-weight peptide collagen powder, and collagen films were fabricated using a dip coating method. The collagen films prepared by dip coating showed a smooth surface without defects such as pinholes or cracks. Dehydrothermal treatment of the collagen films was performed to induce a stable molecular structure through cross-linking. The collagen film subjected to dehydrothermal treatment at 110 °C for 24 h showed a thickness reduction rate of 19 %. Analysis of the collagen films showed that the crystallinity of the collagen film improved by about 7.9 % after dehydrothermal treatment. A collagen film-based piezoelectric nanogenerator showed output characteristics of approximately 13.7 V and 1.4 μA in a pressure test of 120 N. The generator showed a maximum power density of about 2.91 mW/m2 and an output voltage of about 8~19 V during various human body movements such as finger tapping. The collagen film-based piezoelectric generator showed improved output performance with improved crystallinity and piezoelectricity after dehydrothermal treatment.
4,000원