용융점 및 물리.화학적 특성이 UO2와 비슷한 yttria-stabilized-zirconia (ZrO2-Y2O3)분말을 유도플라즈마(induction plasma)로 용융 침적시켜 원자력발전용 핵연료펠렛 제조공정에 응용하고자 하였다. 분말의 용융정도는 플라즈마동력 및 분말의 크기에 영향을 받는 것으로 나타났으며, 쉬스가스 조성, 분말분사관 위치, 입자크기 및 분사거리 등을 최적화 하여 Ar/h2유량120/20ℓ/min, 플리즈마 동력 80KW, 분사관의위치 8cm , 챔버압력 200Torr, 분사거리 18cm에서 이론밀도의 97.91%, 침적속도 20mm/min의 최적조건을 도출하였다. 침적시험에서 도출된 최적조건으로 펠렛몰더에서 제조한 펠렛은 96.5%의 밀도를 나타내었으며, 균일도 및 외곤도 우수하여 신기술에 의한 핵연료의 제조가능성을 확인하였다. 고밀도 침적에 영향을 미치는 각 변수들의 영향과 이들 변수들의 상호영향은 ANOVA(Analysis of Variance)을 이용하여 분석하였다.
self-aligned silicide(salicide)제조시 CoSi2의 에피텍셜 성장을 돕기 위하여 Co와 Si 사이에 내열금속층을 넣은 Co/내열금속/Si의 실리사이드화가 관심을 끌고 있다. Hf 역시 Ti와 마찬가지로 이러한 용도로 사용될 수 있다. 한편, Co/Hf 이중층 salicide 트랜지스터가 성공적으로 만들어지기 위해서는 spacer oxide 위에 증착된 Co/Hf 이중층이 열적으로 안정해야 한다. 이러한 배경에서 본 연구에서는 SiO2기판 위에 증착한 Co 단일층과 Co/Hf 이중층을 급속열처리할 때 Co와 SiO2간의 계면과 Co/Hf와 SiO2간의 계면에서의 상호반응에 대하여 조사하였다. Co 단일층과 Co/Hf 이중층은 각각 500˚C와 550˚C에서 열처리한 후 면저항이 급격하게 증가하기 시작하였는데, 이것은 Co층이 SiO2와의 계면에너지를 줄이기 위하여 응집되기 때문이다. 이 때 Co/Hf의 경우 열처리후 Hf에 의하여 SiO2 기판이 일부 분해됨으로써 Hf 산화물이 형성되었으나, 전도성이 있는 HfSix 등의 화합물은 발견되지 않았다.
Diglycidy1 ether of bisphenol A (DEGBA)/4, 4'-methylene dianiline(MDA) 계의 반응속도에 미치는 10 phr의 pheny1 glycidy1 ether(PGE)-acetamide(AcAm)의 영향을 살펴보았다. PGE-AcAm이 첨가됨으로 인해서 승온적 DSC 곡선에서 최대 발열피크의 온도와 피크 시작 온도가 감소하였다. PGE-AcAm의 첨가 여부에 관계없이 전화율 곡선은 s-자 형상이었고, 이는 DGEBA/MDA 계와 DGEBA/MDA/PGE-AcAm 계가 자촉대 반응을 한다는 것을 의미한다. 또한 PGE-AcAm이 10 phr 첨가됨으로 인해서 1.2-1.4배 증가하였는데, 이는 PGE-AcAm의 수산기가 촉매로 작용하기 때문이다.
polyimide를 입힌 SiO2 wafer상에 증착된 알루미늄 박막의 두께 및 소둔 여부에 따른 hillock의 거동을 atomic force microscopy (AFM)을 이용하여 분석하였다. 증착된 상태의 박막에서 성장 hillock이 관찰되었으며 박막 두께가 증가할수록 hillock의 크기는 증가한 반면 밀도는 감소하였다. 소둔 후 hillock의 평균 크기는 증가하였으나 밀도는 감소하였다. 이러한 hillock 밀도의 감소는 견고한 wafer상에 직접 증착된 알루미늄 박막에서와 다르다. 이는 유연한 polymide 박막에 의한 응력 완화로 응력유기 입계확산이 이루어지지 않아 hillock 이 추가로 형성되지 않은 상태에서 큰 hillock이 성장하면서 작은 hillock을 흡수하기 때문으로 판단된다.
Sn-Bi-X(X:2Cu, 2Sb, 5In) 계 땜납과 Cu 기판과의 계면반응 및 기계적성질에 대하여 고찰하였다. Cu판과 땜납의 접합부는 100˚C에서 60일까지 열처리하여 광학현미경, SEM, EDS,분석을 통하여 시효처리에 따른 미세조직과 계면반응을 분석하였으며, 인장강도 및 연신율은 제조된 시편을 30일까지 열처리 한 후 0.3mm min-1로 인장하여 시험하였다. 미세조직 분석결과 Cu의 첨가로 미세조직이 미세화 됨을 알 수 있으며, 계면에 형성된 화합물은 첨가원소에 따라 다르게 나타났다. 인장시험 결과 열처리 초기에는 땜납쪽에서의 파괴가 발생하였으나 열처리 시간이 증가하면서 계면반응층고 땜납의 계면에서 파괴가 발생하였다. 열처리에 따른 인장강도는 Cu를 첨가한 경우에 가장 높은 값을 나타냈다.
공침법을 이용하여 In2O3가 0-10 wt.% 첨가된 SnO2 계 미세 분말을 합성한 후, 스크린 인쇄법(screen printing)으로 후막형 가스센서를 제조하고 탄화수소(C3h8, C4h10) 가스에 대하여 가스 감응 특성을 조사하였다. In2O3는 SnO2의 입자 성장을 억제시키기 위하여 첨가해 주었는데, 600˚C에서 하소한 후에도 수 nm 크기의 미세한 입자를 얻을 수 있었다. 공침시 pH 값은 SnO2 의 입자 크기에 영향을 거의 미치지 않은 반면, In2O3 첨가량은 입자 크기와 미세 구조에 큰 영향을 주었다. In2O3 첨가량이 증가할수록 입자 크기는 감소하고 비표면적은 증가하였으며, 센세의 동작 온도를 약 500˚C로 하여 측정한 가스 감응 특성은 3wt.% 첨가했을 때 최대 감도를 나타내고 그 이상의 첨가량에서는 오히려 저하되었다. 3wt.%의 In2O3첨가시 SnO2의 입자 크기와 비표면적은 각각 9.5nm, 38m2/g이었다. 임피던스 측정으로부터 얻은 단일 반원의 Nyquist curve와 선형의 전류-전압(1-V)특성 곡선으로부터, In2O3를 첨가하여 수nm로 입자 크기를 억제한 SnO2 계 가스센서는 미세 입자들끼리 형성한 치밀한 응집체와 이들 간의 계면(boundary)에 의해서 가스 감응 특성이 영향을 받음을 알 수 있었다.
합금의 주조시 냉각속도가 Nd16Fe72V4B8 소결자석의 결정립 분포와 착자특성에 미치는 영향에 대하여 조사하였다. 냉각속도가 높은 Cu mold를 사용하여 제작한 시료는 좁은 결정립 분포와 착자특성의 향상을 보였다. B화합물을 생성하는 Cr, Mn, Nb 그리고 w과 같은 첨가원소가 Nd-Fe-B계 소결자석의 착자특성에 미치는 영향에 대해서도 조사하였다. Cr이나 W첨가는 보자력의 향상에 효과적이고 Nd16Fe72Cr4B9합금은 Nd16Fe72V4B8합금과 비슷한 착자특성을 보였다.
자화된 유도결합형 C4F8 플라즈마로 SiO2를 건식식각시 실리콘 표면에 발생하는 손상과 오염에 대하여 연구하였다. 오염의 분석을 위해서 XPS, SIMS, TEM을 사용하였으며, 손상정도를 측정하기 위해서 HRTEM과 Schottky-diode 구성을 통한 I-V특성 측정을 사용하였다. 유도 결합형 C4F8 플라스마에 0에서 18Gauss까지의 자장이 가해짐에 따라서 실리콘 표면에 생기는 잔류막의 두께가 SiO2식각속도와 선택비의 증가와 함께 증가하였으며, XPS를 통하여 그 조성이 fluorine-rich에서 carbon-rich 한 상태로 변화함을 알 수 있었다. 자장을 가하지 않는 상태에서는 표면에서 40Å부근까지 고밀도의 손상층이 관찰되었으나, 자장을 가함에 따라서 노출된 손상층의 깊이는 깊어지나 그 밀도는 줄어들음을 HRTEM을 통하여 관찰 할 수 있었다. Schottky-diode를 통한 I-V특성곡선의 분석으로 자장이 증가함에 따라서 전기적인 손상이 감소함을 알 수 있었다.
Ni기 초합금인 B1914로 다결정, 방향성 및 단결정을 제조하여, 상온과 고온에서 이들 결정종류에 따른 변형을 관찰하였다. 이들 결정을 제작하기 위하여 진공 주조로에서 냉각속도와 온도구배를 제어하였으며, 제작된 봉상 시편들은 2단계의 진공열처리를 하고 아르곤가스로 급냉하였다. 동일한 모합금인 B1914로 제조된 결정들은 결정종류에 따라서 뚜렷한 변형(stress-strain)을 나타내었다. 즉, 항복강도와 인장강도는 다결정, 방향성 및 단결정 순으로 뚜렷이 증가하였다. 또한 600˚C에서 모든 결정들은 γ'의 강화효과로 인해서 가장 높은 741-816MPa의 항복강도를 나타내었으며, 인장강도는 1005-1139MPa이었다.