Tin (IV) dioxide (SnO2) has attracted much attention due to its potential scientific significance and technological applications. SnO2 nanoparticles were prepared under low temperature and pressure conditions via precipitation from a 0.1 M SnCl4·5H2O solution by slowly adding NH4OH while rapidly stirring the solution. SnO2 nanoparticles were obtained from the reaction in the temperature range from 130 to 250˚C during 6 h. The microstructure and phase of the synthesized tin oxide particles were studied using XRD and TEM analyses. The average crystalline sizes of the synthesized SnO2 particles were from 5 to 20 nm and they had a narrow distribution. The average crystalline size of the synthesized particles increased as the reaction temperature increased. The crystalline size of the synthesized tin oxide particles decreased with increases in the pH value. The X-ray analysis showed that the synthesized particles were crystalline, and the SAED patterns also indicate that the synthesized SnO2 nanoparticles were crystalline. Furthermore, the morphology of the synthesized SnO2 nanoparticles was as a function of the reaction temperature. The effects of the synthesis parameters, such as the pH condition and reaction temperature, are also discussed.
Pt nanoparticle catalysts incorporated on RuO2 nanowire support were successfully synthesized and their electrochemical properties, such as methanol electro-oxidation and electrochemically active surface (EAS) area, were demonstrated for direct methanol fuel cells (DMFCs). After fabricating RuO2 nanowire support via an electrospinning method, two different types of incorporated Pt nanoparticle electrocatalysts were prepared using a precipitation method via the reaction with NaBH4 as a reducing agent. One electrocatalyst was 20 wt% Pt/RuO2, and the other was 40 wt% Pt/RuO2. The structural and electrochemical properties of the Pt nanoparticle electrocatalysts incorporated on electrospun RuO2 nanowire support were investigated using a bright field transmission electron microscopy (bright field TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry. The bright field TEM, XRD, and XPS results indicate that Pt nanoparticle electrocatalysts with sizes of approximately 2-4 nm were well incorporated on the electrospun RuO2 nanowire support with a diameter of approximately 50 nm. The cyclic voltammetry results showed that the Pt nanoparticle catalysts incorporated on the electrospun RuO2 nanowire support give superior catalytic activity in the methanol electro-oxidation and a higher electrochemically active surface (EAS) area when compared with the electrospun Pt nanowire electrocatalysts without the RuO2 nanowire support. Therefore, the Pt nanoparticle catalysts incorporated on the electrospun RuO2 nanowire support could be a promising electrode for direct methanol fuel cells (DMFCs).
The industrial manufacturing of YSZ products can be summarized as a three step process: a) hydrolysis of zirconyl chloride and mixing of other solutions, b) precipitation, and c) calcination. The addition of ammonia or OH- is essential in the precipitation process. However, a strong agglomeration was observed in the results of an ammonia or OH- addition. Thus, it is necessary to disperse the powders smoothly in order to improve the mechanical strength of YSZ. In this study, YSZ was synthesized using the urea stabilizer and hydrothermal method. YSZ powders were synthesized using a hydrothermal method with Teflon Vessels at 180˚C for 24 h. The mole ratio of urea to Zr was 0, 0.5, 1, and 2. The crystal phase, particle size, and morphologies were analyzed. Rectangular specimens (33 mm×8 mm×1±0.5 mm) for three-point bend tests were used in the mechanical properties evaluation. The crystalline of YSZ powders observed a tetragonal phase in the sample with a ratio of Zr:urea = 1:2 addition and a hydrothermal reaction time of 24 h. The average primary particle size of YSZ was measured to be 9 nm to 11 nm. The agglomerated particle size was measured from 15 nm to 30 nm. The three-point bending strength of the YSZ samples was 142.47 MPa, which is the highest value obtained for the Zr:urea = 1:2 ratio addition YSZ sample.
In this study, chemical bath deposited (CBD) indium sulfide buffer layers were investigated as a possible substitution for the cadmium sulfide buffer layer in CIGS thin film solar cells. The performance of the In2S3/CIGS solar cell dramatically improved when the films were annealed at 300˚C in inert gas after the buffer layer was grown on the CIGS film. The thickness of the indium sulfide buffer layer was 80 nm, but decreased to 60 nm after annealing. From the X-ray photoelectron spectroscopy it was found that the chemical composition of the layer changed to indium oxide and indium sulfide from the as-deposited indium hydroxide and sulfate states. Furthermore, the overall atomic concentration of the oxygen in the buffer layer decreased because deoxidation occurred during annealing. In addition, an In-thin layer was inserted between the indium sulfide buffer and CIGS in order to modify the In2S3/CIGS interface. The In2S3/CIGS solar cell with the In interlayer showed improved photovoltaic properties in the Jsc and FF values. Furthermore, the In2S3/CIGS solar cells showed higher quantum efficiency in the short wavelength region. However, the quantum efficiency in the long wavelength region was still poor due to the thick buffer layer.
The crystal structure and magnetic properties of a new solid solution type ferrite (Fe2O3)5-(Al2O3)3.4-(Ga2O3)0.6-SiO were investigated using X-ray diffraction and Mössbauer spectroscopy. The results of the X-ray diffraction pattern indicated that the crystal structure of the sample appears to be a cubic spinel type structure. The lattice constant (a = 8.317 Å) decreases slightly with the substitution of Ga2O3 even though the ionic radii of the Ga ions are larger than that of the Al ions. The results can be attributed to a higher degree of covalency in the Ga-O bonds than in the Al-O and Fe-O bonds, which can also be explained using the observed Mössbauer parameters, which are the magnetic hyperfine field, isomer shift, and quadrupole splitting. The drastic change in the magnetic structure according to the Ga ion substitution in the (Fe2O3)5(Al2O3)4-x(Ga2O3)xSiO system and the low temperature variation have been studied through a Mössbauer spectroscopy. The Mössbauer spectrum at room temperature shows the superpositions of two Zeeman patterns and a strong doublet. It shows significant departures from the prototypical ferrite and is comparable with the diluted ferrite. The doublet of spectrum at room temperature appears to originate from superparamagnetic clusters and also the asymmetry of the doublet appears to be caused by the preferred orientation of the crystallites. The Mössbauer spectra below room temperature show various complicated patterns, which can be explained by the freezing of the superparamagnetic clusters. On cooling, the magnetic states of the sample were various and multi critical.
Nano-sized Y2O3 powders were prepared via a sol-gel method starting with Y(NO3)3·6H2O (Yttrium(III) nitrate hexahydrate) and water with ethanol as a cosolvent. Y2O3 is an important rare earth oxide and has been considered for use in nuclear applications, such as ceramic materials, due to its excellent optical and refractory characteristics. It has been used as a chemically stable substrate, a crucible material for melting reactive metals, and a nozzle material for jet casting molten rare earth-iron magnetic alloys. Oxalic acid (C2H2O4) has been adopted as a chelating agent in order to control the rate of hydrolysis and polycondensation, and ammonia was added in order to adjust the base condition. The synthesized Y2O3 powder was characterized using TG/DTA, XRD, FE-SEM, BET and Impedance Analyzer analyses. The powder changed its properties in accordance with the pH conditions of the catalyst. As the pH increases according to the FE-SEM, the grain grew and it showed that the pore size decreased while confirming the effect of the grain size. The nano-material Y2O3 powders demonstrated that the surface area was improved with the addition of oxalic acid with ammonium hydroxide.
Al2TiO5 has a high refractive index and good solubility of the chromophore in the Al2TiO5 lattice, which allowsthis structure to be a good candidate for the development of new ceramic pigments. However, pure Al2TiO5 is well knownto decompose on firing at 900~1100oC. However, this process can be inhibited by the incorporation of certain metal cationsinto its crystalline lattice. In this study, the synthesis of gray ceramic pigment was performed by doping cobalt on the Al2TiO5crystal structure. The Al2TiO5 was synthesized using Al2O3 and TiO2, and doped with Co3O4 as a chromophore material. Inorder to prevent the thermal decomposition during the cooling procedure, MgO was added to samples by 0.05mole, 0.1mole,and 0.15mole as a stabilizer. The samples were fired at 1500oC for 2 hours and cooled naturally. The crystal structure, solubilitylimit, and color of the synthesized pigment were analyzed using XRD, Raman spectroscopy, UV, and UV-vis. Al2O3 wasavailable for the formation of CoAl2O4, which should also be considered in order to explain the small amount of this phasedetected in the sample with the higher Co2+ content (≥0.03mole). It was found that the solubility limit of Co2+ in the Al2TiO5crystal was 0.02mole% through an analysis of Raman spectroscopy. Through the addition of a pigment with 0.02mole% ofCo2+ to lime-barium glaze, stabilized gray color pigments with 66.54, −2.35, and 4.68 as CIE-L*a*b* were synthesized.
Microelectromechanical systems (MEMS)-fabricated suspended devices were used to measure the in-plane electrical conductivity, Seebeck coefficient, and thermal conductivity of 304 nm and 516 nm thick InGaAlAs films with 0.3% ErAs nanoparticle inclusions by volume. The suspended device allows comprehensive thermoelectric property measurements from a single thin film or nanowire sample. Both thin film samples have identical material compositions and the sole difference is in the sample thickness. The measured Seebeck coefficient, electrical conductivity, and thermal conductivity were all larger in magnitude for the thicker sample. While the relative change in values was dependent on the temperature, the thermal conductivity demonstrated the largest decrease for the thinner sample in the measurement temperature range of 325 K to 425 K. This could be a result of the increased phonon scattering due to the surface defects and included ErAs nanoparticles. Similar to the results from other material systems, the combination of the measured data resulted in higher values of the thermoelectric figure of merit (ZT) for the thinner sample; this result supports the theory that the reduced dimensionality, such as in twodimensional thin films or one-dimensional nanowires, can enhance the thermoelectric figure of merit compared with bulk threedimensional materials. The results strengthen and provide a possible direction in locating and optimizing thermoelectric materials for energy applications.
Cu(In, Ga)Se2 (CIGS) precursor films were electrodeposited on Mo/glass substrates in acidic solutions containingCu2+, In3+, Ga3+, and Se4+ ions at −0.6V (SCE) and pH 1.8. In order to induce recrystallization, the electrodepositedCu1.00In0.81Ga0.09Se2.08 (25.0at.% Cu+20.2at.% In+2.2at.% Ga+52.0at.% Se) precursor films were annealed under a highSe gas atmosphere for 15, 30, 45, and 60 min, respectively, at 500oC. The Se amount in the film increased from 52at.% to62at.%, whereas the In amount in the film decreased from 20.8at.% to 9.1at.% as the annealing time increased from 0 (as-deposited state) to 60 min. These results were attributed to the Se introduced from the furnace atmosphere and reacted withthe In present in the precursor films, resulting in the formation of the volatile In2Se. CIGS precursor grains with a cauliflowershape grew as larger grains with the CuSe2 and/or Cu2-xSe faceted phases as the annealing times increased. These faceted phasesresulted in rough surface morphologies of the CIGS films. Furthermore, the CIGS layers were not dense because the emptyspaces between the grains were not removed via annealing. Uniform thicknesses of the MoSe2 layers occurred at the 45 and60 min annealing time. This implies that there was a stable reaction between the Mo back electrode and the Se diffused throughthe CIGS film. The results obtained in the present research were sufficiently different from comparable studies where therecrystallization annealing was performed under an atmosphere of Ar gas only or a low Se gas pressure.
[ LaMeO3 ](Me = Cr, Co) powders were prepared using the polymeric precursor method. The effects of the chelating agent and the polymeric additive on the synthesis of the LaMeO3 perovskite were studied. The samples were synthesized using ethylene glycol (EG) as the solvent, acetyl acetone (AcAc) as the chelating agent, and polyvinylpyrrolidone (PVP) as the polymer additive. The thermal decomposition behavior of the precursor powder was characterized using a thermal analysis (TG-DTA). The crystallization and particle sizes of the LaMeO3 powders were investigated via powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and particle size analyzer, respectively. The as-prepared precursor primarily has LaMeO3 at the optimum condition, i.e. for a molar ratio of both metal-source (a : a) : EG (80a : 80a) : AcAc (8a) inclusive of 1 wt% PVP. When the as-prepared precursor was calcined at 700˚C, only a single phase was observed to correspond with the orthorhombic structure of LaCrO3 and the rhombohedral structure of LaCoO3. A solid-electrolyte impedance-metric sensor device composed of Li1.5Al0.5Ti1.5(PO4)3 as a transducer and LaMeO3 as a receptor has been systematically investigated for the detection of NOx in the range of 20 to 250 ppm at 400˚C. The sensor responses were able to divide the component between resistance and capacitance. The impedance-metric sensor for the NO showed higher sensitivity compared with NO2. The responses of the impedance-metric sensor device showed dependence on each value of the NOx concentration.