The industrial manufacturing of YSZ products can be summarized as a three step process: a) hydrolysis of zirconyl chloride and mixing of other solutions, b) precipitation, and c) calcination. The addition of ammonia or OH- is essential in the precipitation process. However, a strong agglomeration was observed in the results of an ammonia or OH- addition. Thus, it is necessary to disperse the powders smoothly in order to improve the mechanical strength of YSZ. In this study, YSZ was synthesized using the urea stabilizer and hydrothermal method. YSZ powders were synthesized using a hydrothermal method with Teflon Vessels at 180˚C for 24 h. The mole ratio of urea to Zr was 0, 0.5, 1, and 2. The crystal phase, particle size, and morphologies were analyzed. Rectangular specimens (33 mm×8 mm×1±0.5 mm) for three-point bend tests were used in the mechanical properties evaluation. The crystalline of YSZ powders observed a tetragonal phase in the sample with a ratio of Zr:urea = 1:2 addition and a hydrothermal reaction time of 24 h. The average primary particle size of YSZ was measured to be 9 nm to 11 nm. The agglomerated particle size was measured from 15 nm to 30 nm. The three-point bending strength of the YSZ samples was 142.47 MPa, which is the highest value obtained for the Zr:urea = 1:2 ratio addition YSZ sample.
In this study, partially stabilized zirconia was synthesized using a chemical Y2O3 stabilizer and hydrothermal method. First, YCl3-6H2O and ZrCl2O-8H2O was dissolved in distilled water. Y-TZP (a Y2O3-doped toughened zirconia polycrystalline precursor) was also prepared by conventional co-precipitates in the presence of an excess amount of NH4OH solution under a fixed pH of 12. The Y-TZP precursors were filtered and repeatedly washed with distilled water to remove Cl- ions. ZrO2-Xmol%Y2O3 powder was synthesized by a hydrothermal method using Teflon Vessels at 180˚C for 6 h of optimized condition. The powder added with the Xmol%- Y2O3 (X = 0,1,3,5 mol%) stabilizer of the ZrO2 was synthesized. The crystal phase, particle size, and morphologies were analyzed. Rectangular specimens of 33mm×8mm×3 mm for three-point bend tests were used in the mechanical properties evaluation. A teragonal phase was observed in the samples, which contains more than 3 mol% Y2O3. The 3Y-ZrO2 agglomerated particle size was measured at 7.01μm. The agglomerated particle was clearly observed in the sample of 5 mol % Y2O3-ZrO2, and and the agglomerated particle size was measured at 16.4 um. However, a 20 nm particle was specifically observed by FE-SEM in the sample of 3 mol% Y2O3-ZrO2. The highest bending fracture strength was measured as 321.3 MPa in sample of 3 mol% Y2O3-ZrO2.