간행물

한국재료학회지 KCI 등재 SCOPUS Korean Journal of Materials Research

권호리스트/논문검색
이 간행물 논문 검색

권호

제25권 제2호 (2015년 2월) 8

1.
2015.02 구독 인증기관 무료, 개인회원 유료
Fe2O3 coated plate mica(Fe2O3/mica) for infrared reflectance red pigment was prepared under hydrothermal treatment. Fe2O3 was perfectly coated on mica via the difference of surface charge between Fe2O3 and mica particles at pH 3. Fe2O3/mica was then calcined at 800 oC to stabilize the coated layer on mica. The infrare (IR) reflectance pigments were characterized by X-ray diffraction, FE-SEM, zeta potential, and a UV-Vis-NIR spectrophotometer. In particular, the CIE color coordinate and IR reflectance properties of Fe2O3/mica pigments were investigated in relation to the thickness variation of the Fe2O3 layer coated on mica of various lateral sizes. The isolation-heat red paints containing the pigments were prepared and optimized with a thinner, settling agent, and dispersant. Then, the films were made. The thermal property of isolation-heat on these films was observed through the relationship of the IR reflectance value, which was based on the variation of the Fe2O3 layer’s thickness coated on mica and mica’s lateral size as IR reflectance pigment. With an increase in IR reflectance on these films, the thermal property of isolation-heat was effectively enhanced.
4,000원
2.
2015.02 구독 인증기관 무료, 개인회원 유료
The porous Mg3Sb2 based compounds with 60~70% of relative density were prepared by powder compaction at room temperature and reactive liquid phase sintering at 1023 K for 4hrs. The stoichiometric Mg3Sb2 compounds were synthesized from elemental Sb and Mg powder in the mixing range of 61~63 at% Mg. The increased scattering effect due to the micro-pores reduced the mobility of the charge carrier and the phonon, which caused the electrical conductivity and the thermal conductivity to decrease, respectively. But the scattering effect was greater for the electrical conductivity than for the thermal conductivity. Excess Mg alloyed in the Mg3Sb2 compounds decreased the electrical conductivity, but had no effect on the thermal conductivity. On the other hand, the large increase of the Seebeck coefficient was the result of a decrease in the charge carrier density due to the excess Mg. Dimensionless figure of merit of the porous Mg3Sb2 compound reached a maximum value of 0.28 at 61 at% Mg. The obtained value was similar to that of Mg3Sb2 compounds having little pores.
4,000원
3.
2015.02 구독 인증기관 무료, 개인회원 유료
The carbon dioxide(CO2) released while producing building materials is substantial and has been targeted as a leading contributor to global climate change. One of the most typical method to reducing CO2 for building materials is the addition of slag and fly ash, like pozzolan material, while another method is reducing CO2 production by carbon negative cement development. The MgO-based cement was from the low-temperature calcination of magnesite required less energy and emitted less CO2 than the manufacturing of Portland cements. It is also believed that adding reactive MgO to Portland-pozzolan cements could improve their performance and also increase their capacity to absorb atmospheric CO2. In this study, the basic research for magnesia cement using MgCO3 and magnesium silicate ore (serpentine) as main starting materials, as well as silica fume, fly ash and blast furnace slag for the mineral admixture, were carried out for industrial waste material recycling. In order to increase the hydration activity, MgCl2 was also added. To improve hydration activity, MgCO3 and serpentinite were fired at 700 oC and autoclave treatment was conducted. In the case of MgCO3 as starting material, hydration activity was the highest at firing temperature of 700 oC. This MgCO3 was completely transferred to MgO after firing. This occurred after the hydration reaction with water MgO was transferred completely to Mg(OH)2 as a hydration product. In the case of using only MgCO3, the compressive strength was 3.5MPa at 28 days. The addition of silica fume enhanced compressive strength to 5.5 MPa. In the composition of MgCO3-serpentine, the addition of pozzolanic materials such as silica fume increased the compression strength. In particular, the addition of MgCl2 compressive strength was increased to 80 MPa.
4,000원
4.
2015.02 구독 인증기관 무료, 개인회원 유료
A strain-gradient crystal plasticity constitutive model was developed in order to predict the Hall Petch behavior of a Ni-base polycrystalline superalloy. The constitutive model involves statistically stored dislocation and geometrically necessary dislocation densities, which were incorporated into the Bailey-Hirsch type flow stress equation with six strength interaction coefficients. A strain-gradient term (called slip-system lattice incompatibility) developed by Acharya was used to calculate the geometrically necessary dislocation density. The description of Kocks-Argon-Ashby type thermally activated strain rate was also used to represent the shear rate of an individual slip system. The constitutive model was implemented in a user material subroutine for crystal plasticity finite element method simulations. The grain size dependence of the flow stress (viz., the Hall- Petch behavior) was predicted for a Ni-base polycrystalline superalloy NIMONIC PE16. Simulation results showed that the present constitutive model fairly reasonably predicts 0.2%-offset yield stresses in a limited range of the grain size.
4,000원
5.
2015.02 구독 인증기관 무료, 개인회원 유료
We prepared 8 samples of non-silver and silver-added master alloys containing silicon to confirm the existence of nickel-silicides. We then prepared products made of 14K and 18K white gold by using the prepared master alloys containing 0.25, 0.35, and 0.50 wt% silicon to check for nickel release. We then employed the EN 1811 testing standard to investigate the nickel release of the white gold products, and we also confirmed the color of the white gold products with an UV-VISNIR- color meter. We observed NiSix residue in all master alloys containing more than 0.50 wt% Si with EDS-nitric acid etching. For the white gold products, we could not confirm the existence of NiSix through XRD after aqua regia etching. In the EN 1811 test, only the white gold products with 0.25 wt% silicon master alloys successfully passed the nickel release regulations. Moreover, we confirmed that our white gold products showed excellent Lab indices as compared to those of commercial white gold ones, and the silver-added master alloys offered a larger L index. Our results indicate that employing 0.25 wt% silicon master alloys might be suitable for white gold products without nickel-silicide defects and nickel release problems.
4,000원
6.
2015.02 구독 인증기관 무료, 개인회원 유료
NiAl2O4 nanoparticle was synthesized by a reverse micelle processing for inorganic pigment. N (NO3)2·6H2O and Al(NO3)3·9H2O were used for the precursor in order to synthesize NiAl2O4 nanoparticles. The aqueous solution, which consisted of a mixing molar ratio of Ni/Al, was 1:2 and heat treated at 800~1100 oC for 2h. The average size and distribution of synthesized NiAl2O4 powders are in the range of 10-20 nm and narrow, respectively. The average size of the synthesized NiAl2O4 powders increased with an increasing water-to-surfactant molar ratio and heating temperature. The crystallinity of synthesized NiAl2O4 powder increased with an increasing heating temperature. The synthesized NiAl2O4 powders were characterized by X-ray diffraction analysis(XRD), a field emission scanning electron microscop (FE-SEM), and a color spectrophotometer. The properties of synthesized powders were affected as a function such as a molar ratio and heating temperature. Results indicate that synthesis using a reverse miclle processing is a favorable process to obtain NiAl2O4 spinels at low temperatures. The procedure performed suggests that this new synthesis route for producing these oxides has the advantage of being fast and simple. Colorimetric coordinates indicate that the pigments obtained exhibit blue colors.
4,000원
7.
2015.02 구독 인증기관 무료, 개인회원 유료
Plasma properties of dielectric barrier discharges (DBDs) at atmospheric pressure were measured and characterized using optical emission spectroscopy. Optical emissions were measured from argon, nitrogen, or air discharges generated at 5- 9 kV using 20 kHz power supply. Emissions from nitrogen molecules were markedly measured, irrespective of discharge gases. The intensity of emission peaks was increased with applied voltage and electrode gap. The short wavelength peaks (315.9 nm and 337.1 nm) measured at the middle of DBDs were significantly increased with applied voltage. The optical emission from DBDs decreased with the addition of oxygen gas, which was especially significant in argon discharge. Emission from oxygen molecules cannot be measured from air discharge and argon discharge with 4.8% oxygen. The emission intensity at 337.1 nm and 357.7 nm related with nitrogen molecule was sensitively changed with electrode types and discharge voltages. However, the pattern of argon emission spectrum was nearly the same, irrespective of electrode type, oxygen content, and discharge voltage.
4,000원
8.
2015.02 구독 인증기관 무료, 개인회원 유료
The oxide films formed on etched aluminum foils play an important role as dielectric layers in aluminum electrolytic capacitors. Y2O3-doped ZrO2 (YZ) films were coated on the etched aluminum foils by sol-gel dip coating, and the electrical properties of YZ-coated Al foils were characterized. YZ films annealed at 450 oC were crystallized into a cubic phase, and as the Y2O3 doping content increased, the unit cell of ZrO2 expanded and the grain size decreased. The etch pits of Al foils were filled by YZ sol when it dried at atmospheric pressure after repeating for several times, but this step could essentially be avoided when being dried in a vacuum. YZ-coated foils indicated that the specific capacitance and dissipation factor were 2-2.5 μF/cm2 and 2-4 at 1 kHz, respectively, and the leakage current and withstanding voltage of films approximately 200 nm thick were 5 × 10−4A at 21 V and 22 V, respectively. After being anodized at 500 V, the foils exhibited a specific capacitance and dissipation factor of 0.6-0.7 μF/cm2 and 0.1-0.2, respectively, at 1 kHz, while the leakage current and withstanding voltage were 2 × 10−4 - 3 × 10−5 A at 400 V and 420-450 V, respectively. This suggests that YZ film is a promising dielectric that can be used in high voltage Al electrolytic capacitors.
4,000원