검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 16

        1.
        2019.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study investigates Ag coated Cu2O nanoparticles that are produced with a changing molar ratio of Ag and Cu2O. The results of XRD analysis reveal that each nanoparticle has a diffraction pattern peculiar to Ag and Cu2O determination, and SEM image analysis confirms that Ag is partially coated on the surface of Cu2O nanoparticles. The conductive paste with Ag coated Cu2O nanoparticles approaches the specific resistance of 6.4 Ω·cm for silver paste(SP) as (Ag) /(Cu2O) the molar ratio increases. The paste(containing 70 % content and average a 100 nm particle size for the silver nanoparticles) for commercial use for mounting with a fine line width of 100 μm or less has a surface resistance of 5 to 20 μΩ·cm, while in this research an Ag coated Cu2O paste has a larger surface resistance, which is disadvantageous. Its performance deteriorates as a material required for application of a fine line width electrode for a touch panel. A touch panel module that utilizes a nano imprinting technique of 10 μm or less is expected to be used as an electrode material for electric and electronic parts where large precision(mounting with fine line width) is not required.
        4,000원
        2.
        2017.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Abstract Y2Ti2O7 nanoparticles (0.3 mol%) have been successfully synthesized by the co-precipitation process. The samples, adjusted to pH7 with ammonia solution as catalyst and calcined at 700~900 ℃, exhibit very fine particles with close to spherical shape and average size of 10-30 nm. It was possible to control the size of the synthesized Y2Ti2O7 particles by manipulating the conditions. The Y2Ti2O7 nanoparticles were coated on a glass substrate by a dipping coating process with inorganic binder. The Y2Ti2O7 solution coated on the glass substrate had excellent adhesion of 5B; pencil hardness test results indicated an excellent hardness of 6H. The thickness of the thick film was about 30 μm. Decomposition of MB on the Y2Ti2O7 thin film shows that the photocatalytic properties were excellent.
        4,000원
        3.
        2016.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nickel powders were prepared under solvothermal condition by precipitation from metal nitrates with aqueous ammonium hydroxide. The powders were obtained at in a temperature range of 190-250 oC for 6h. The morphology and size of nickel powders were studied as a function of reaction temperature. The synthesis of nickel crystalline particles is possible under a solvothermal conditions in ethylene glycol solution. Characterization of the synthesized nickel powders were studied by XRD, SEM(FE-SEM) and TG/DSC. X-ray diffraction analysis of the synthesized powders indicated the formation of nickel structure after reaction. The average crystalline sizes of the synthesized nickel powders were in the range of 200-1000 nm; and the distribution of the powders was broad. The shape of the synthesized nickel particles was almost spherical. The morphology of synthesized nickel powders changed with reaction condition. It was possible to synthesize nickel powders directly in ethylene glycol without reducing agent.
        3,000원
        4.
        2015.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, the properties of Ag-coated TiO2 nanoparticles were observed, while varying the molar ratio of water and Ag+ for the surfactant and TiO2. According to the XRD results, each nanoparticle showed a distinctive diffraction pattern. The intensity of the respective peaks and the sizes of the nanoparticles increased in the order of AT1(R1 = 5)(33.3 nm), AT2 (R1 = 10)(38.1 nm), AT3(R1 = 20)(45.7 nm), AT4(R1 = 40)(48.6 nm) as well as AT5(R2 = 0.2, R3 = 0.5)(41.4 nm), AT6(R2 = 0.3, R3 = 1)(45.1 nm), AT7(R2 = 0.5, R3 = 1.5)(49.3 nm), AT8(R2 = 0.7, R3 = 2)(57.2 nm), which values were consistent with the results of the UV-Vis. spectrum. The surface resistance of the conductive pastes fabricated using the prepared Ag-coated TiO2 nanoparticles exhibited a range 7.0~9.0(274~328 μΩ/cm2) times that of pure silver paste(ATP)(52 μΩ/cm2).
        4,000원
        5.
        2015.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        NiAl2O4 nanoparticle was synthesized by a reverse micelle processing for inorganic pigment. N (NO3)2·6H2O and Al(NO3)3·9H2O were used for the precursor in order to synthesize NiAl2O4 nanoparticles. The aqueous solution, which consisted of a mixing molar ratio of Ni/Al, was 1:2 and heat treated at 800~1100 oC for 2h. The average size and distribution of synthesized NiAl2O4 powders are in the range of 10-20 nm and narrow, respectively. The average size of the synthesized NiAl2O4 powders increased with an increasing water-to-surfactant molar ratio and heating temperature. The crystallinity of synthesized NiAl2O4 powder increased with an increasing heating temperature. The synthesized NiAl2O4 powders were characterized by X-ray diffraction analysis(XRD), a field emission scanning electron microscop (FE-SEM), and a color spectrophotometer. The properties of synthesized powders were affected as a function such as a molar ratio and heating temperature. Results indicate that synthesis using a reverse miclle processing is a favorable process to obtain NiAl2O4 spinels at low temperatures. The procedure performed suggests that this new synthesis route for producing these oxides has the advantage of being fast and simple. Colorimetric coordinates indicate that the pigments obtained exhibit blue colors.
        4,000원
        6.
        2014.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Inorganic pigments have high thermal stability and chemical resistance at high temperature. For these reasons, they are used in clay, paints, plastic, polymers, colored glass and ceramics. CoAl2O4 nano-powder was synthesized by reverse-micelle processing the mixed precursor(consisting of Co(NO3)2 and Al(NO3)3). The CoAl2O4 was prepared by mixing an aqueous solution at a Co:Al molar ratio of 1:2. The average particle size, and the particle-size distribution, of the powders synthesized by heat treatment (at 900; 1,000; 1,100; and 1,200˚C for 2h) were in the range of 10-20 nm and narrow, respectively. The average size of the synthesized nano-particles increased with increasing water-to-surfactant molar ratio. The synthesized CoAl2O4 powders were characterized by X-ray diffraction analysis(XRD), field-emission scanning electron microscopy(FE-SEM) and color spectrophotometry. The intensity of X-ray diffraction of the synthesized CoAl2O4 powder, increased with increasing heating temperature. As the heating temperature increased, crystal-size of the synthesized powder particles increased. As the R-value(water/surfactant) and heating temperature increased, the color of the inorganic pigments changed from dark blue-green to cerulean blue.
        4,000원
        7.
        2014.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The corrosion resistance of submerged entry nozzle (SEN) materials were investigated for high-class steel manufacturing. Composite samples were fabricated by mixing ZrO2, Al2O3, MgO, mullite, spinel, and carbon. The raw materials were mixed with attrition milling, compacted in a uniaxial pressure of 200MPa and calcined at 1000˚C for 3 h in N2 atmosphere. The bulk density and apparent porosity of the calcined samples were measured by the liquid displacement method in water using Archimedes's principle. The corrosion resistance of the samples were measured by cup test with mold powder at 1550˚C for 2 h. The microstructure and elemental analysis of samples were observed by scanning electron microscopy (SEM), energy dispersive spectrum (EDS), and X-ray diffraction pattern (XRD). The XRD result shows that the starting raw materials were crystalline phase. The microstructure of fabricated specimen was investigated before and after corrosion tests at 1000˚C and 1550˚C for 2h. ZrO2-C composite showed good resistance in the slag corrosion test. Among the composite oxide materials, ZrO2-Al2O3-C and ZrO2-MgO-C showed better resistance than ZrO2-C in the slag corrosion test. The diameter variation index of ZrO2-C refractory was 16.1 at 1000˚C for 2 h. The diameter variation index of the ZrO2-Al2O3-C refractory was larger than that of the ZrO2-C refractory at 1550˚C for 2 h.
        4,000원
        8.
        2014.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The Mg-enriched magnesium aluminum silicate (MAS) glass is known for its higher mechanical strength and chemical resistance. Among such glasses, cordierite (Mg2Al4Si5O18) is well known to have a low thermal expansion and low melting point. Polycrystalline engineering ceramics such as alumina can be strengthened by a surface modification with low thermal expansion materials. The present study involves the synthesis of cordierite by a sol-gel process and investigates the effect of glass penetration on the surface of alumina. The cordierite powders were prepared from Al(OC3H7)3, Mg(OC2H5)2 and tetraethyl orthosilicate by hydrolysis and condensation reaction. The cordierite powders were characterized by X-ray diffraction (XRD, Rigaku), scanning electron microscope (SEM, JEOL: JSM-5610), energy dispersive spectroscopy (EDS, JEOL: JSM-5610), and universal testing machine (UTM, INSTRON). The X-ray diffraction patterns showed that the synthesized particles were μ-cordierite calcined at 1100˚C for 1 h. The shape of synthesized cordierite was changed from μ-cordierite to α-cordierite with increasing calcination temperature. Synthesized cordierite was used for surface modification of alumina. Cordierite powders penetrated deeply into the alumina sample along grain boundaries with increasing temperature. The results of surface modification tests showed that the strength of the prepared alumina sample increased after surface modification. The strength of a surface modified with synthesized cordierite increased the most, to about 134.6MPa.
        4,000원
        9.
        2013.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we fabricated Nd2Fe14B hard magnetic powders with various sizes via spray drying combined with reduction-diffusion process. Spray drying is widely used to produce nearly spherical particles that are relatively homogeneous. Thus, the precursor particles were prepared by spray drying using the aqueous solution containing Nd salts, Fe salts and boric acid with the target stoichiometric composition of Nd2Fe14B. The mean particle sizes of the spray-dried powders are in the range from one to seven micrometer, which are adjusted by controlling the concentra- tions of precursor solutions. After debinding the as-prepared precursor particles, ball milling was also conducted to con- trol the particle sizes of Nd-Fe-B oxide powders. The resulting particles with different sizes were subjected to subsequent treatments including hydrogen reduction, Ca reduction and washing for CaO removal. The size effect of Nd-Fe-B oxide particles on the formation of Nd2Fe14B phase and magnetic properties was investigated.
        4,200원
        10.
        2013.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nano-sized β-SiC nanoparticles were synthesized combined with a sol-gel process and a carbothermal process. TEOS and carbon black were used as starting materials for the silicon source and carbon source, respectively. SiO2 nanoparticles were synthesized using a sol-gel technique (Stober process) combined with hydrolysis and condensation. The size of the particles could be controlled by manipulating the relative rates of the hydrolysis and condensation reactions of tetraethyl orthosilicate (TEOS) within the micro-emulsion. The average particle size and morphology of synthesized silicon dioxide was about 100nm and spherical, respectively. The average particles size and morphology of the used carbon black powders was about 20nm and spherical, respectively. The molar ratio of silicon dioxide and carbon black was fixed to 1:3 in the preparation of each combination. SiO2 and carbon black powders were mixed in ethanol and ball-milled for 12 h. After mixing, the slurries were dried at 80˚C in an oven. The dried powder mixtures were placed in alumina crucibles and synthesized in a tube furnace at 1400~1500˚C for 4 h with a heating rate of 10˚C/min under flowing Ar gas (160 cc/min) and furnace cooling down to room temperature. SiC nanoparticles were characterized by XRD, TEM, and SAED. The XRD results showed that high purity beta silicon carbide with excellent crystallinity was synthesized. TEM revealed that the powders are spherical shape nanoparticles with diameters ranging from 15 to 30 nm with a narrow distribution.
        3,000원
        11.
        2012.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The preparation of Sm2O3 doped CeO2 in Igepal CO-520/cyclohexane reverse micelle solutions has been studied. In the present work, we synthesized nanosized Sm2O3 doped CeO2 powders by reverse micelle process using aqueous ammonia as the precipitant; hydroxide precursor was obtained from nitrate solutions dispersed in the nanosized aqueous domains of a micro emulsion consisting of cyclohexane as the oil phase, and poly (xoyethylene) nonylphenylether (Igepal CO-520) as the non-ionic surfactant. The synthesized and calcined powders were characterized by Thermogravimetry-differential thermal analysis (TGA-DTA), X-ray diffraction analysis (XRD), and Transmission electron microscopy (TEM). The crystallite size was found to increase with increase in water to surfactant (R) molar ratio. Average particle size and distribution of the synthesized Sm2O3 doped CeO2 were below 10 nm and narrow, respectively. TG-DTA analysis shows that phase of Sm2O3 doped CeO2 nanoparticles changed from monoclinic to tetragonal at approximately 560˚C. The phase of the synthesized Sm2O3 doped CeO2 with heating to 600˚C for 30 min was tetragonal CeO2. This study revealed that the particle formation process in reverse micelles is based on a two step model. The rapid first step is the complete reduction of the metal to the zero valence state. The second step is growth, via reagent exchanges between micelles through the inter-micellar exchange.
        3,000원
        12.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Novel polymer mold process for fabrication of microcomponents using metal nanopowders was developed and experimentally optimized. Polymer mold for forming green components was produced by using a hard master mold and polydimethylsiloxane (PDMS). In the preparation of metallic powder premix for the green components without any defect, 90 wt.% 17-4PH statinless steel nanopowders and 10 wt.% organic binder were mixed by a ball milling process. The green components with very clear gear shape were formed by filling the powder premix into the PDMS soft mold in surrounding at about . Cold isostatic pressing (CIP) was very potent process to decrease a porosity in the sintered microcomponent. The microgear fabricated by the improved process showed a good dimension tolerance of about 1.2%.
        4,000원
        16.
        1996.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        다공성 알루미나 지지체를 이용하여 졸에 침지하는 미세한 기공으로 이루어진 티타니아 여과막을 제조하였다. 티타니아 졸은 현?액 재안정화 공정으로 제조하였고, pH 1.23-1.32범위에서 졸의 평균입지크기는 15nm 이하였다. 이 여과막은 600˚C에서 1시간 열처리한 경우 평균입도는 30-40nm로서 입도 분포가 좁은 양호한 여과막을 제조하였다. 이때 입자의 모양은 구형이었다. 열처리 온도가 600˚C보다 높아지면 여과막을 구성하는 입자 모양을 다각형으로 변하고 입도의 분포는 넓어졌다.
        4,000원