In this study, the properties of Ag-coated TiO2 nanoparticles were observed, while varying the molar ratio of water and Ag+ for the surfactant and TiO2. According to the XRD results, each nanoparticle showed a distinctive diffraction pattern. The intensity of the respective peaks and the sizes of the nanoparticles increased in the order of AT1(R1 = 5)(33.3 nm), AT2 (R1 = 10)(38.1 nm), AT3(R1 = 20)(45.7 nm), AT4(R1 = 40)(48.6 nm) as well as AT5(R2 = 0.2, R3 = 0.5)(41.4 nm), AT6(R2 = 0.3, R3 = 1)(45.1 nm), AT7(R2 = 0.5, R3 = 1.5)(49.3 nm), AT8(R2 = 0.7, R3 = 2)(57.2 nm), which values were consistent with the results of the UV-Vis. spectrum. The surface resistance of the conductive pastes fabricated using the prepared Ag-coated TiO2 nanoparticles exhibited a range 7.0~9.0(274~328 μΩ/cm2) times that of pure silver paste(ATP)(52 μΩ/cm2).