NiAl2O4 nanoparticle was synthesized by a reverse micelle processing for inorganic pigment. N (NO3)2·6H2O and Al(NO3)3·9H2O were used for the precursor in order to synthesize NiAl2O4 nanoparticles. The aqueous solution, which consisted of a mixing molar ratio of Ni/Al, was 1:2 and heat treated at 800~1100 oC for 2h. The average size and distribution of synthesized NiAl2O4 powders are in the range of 10-20 nm and narrow, respectively. The average size of the synthesized NiAl2O4 powders increased with an increasing water-to-surfactant molar ratio and heating temperature. The crystallinity of synthesized NiAl2O4 powder increased with an increasing heating temperature. The synthesized NiAl2O4 powders were characterized by X-ray diffraction analysis(XRD), a field emission scanning electron microscop (FE-SEM), and a color spectrophotometer. The properties of synthesized powders were affected as a function such as a molar ratio and heating temperature. Results indicate that synthesis using a reverse miclle processing is a favorable process to obtain NiAl2O4 spinels at low temperatures. The procedure performed suggests that this new synthesis route for producing these oxides has the advantage of being fast and simple. Colorimetric coordinates indicate that the pigments obtained exhibit blue colors.