논문 상세보기

나노 실리카와 카본블랙이용 탄화열 반응으로 나노 SiC 합성 및 특성 KCI 등재 SCOPUS

Synthesis of SiC Nanoparticles by a Sol-Gel Process

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/297441
구독 기관 인증 시 무료 이용이 가능합니다. 3,000원
한국재료학회지 (Korean Journal of Materials Research)
한국재료학회 (Materials Research Society Of Korea)
초록

Nano-sized β-SiC nanoparticles were synthesized combined with a sol-gel process and a carbothermal process. TEOS and carbon black were used as starting materials for the silicon source and carbon source, respectively. SiO2 nanoparticles were synthesized using a sol-gel technique (Stober process) combined with hydrolysis and condensation. The size of the particles could be controlled by manipulating the relative rates of the hydrolysis and condensation reactions of tetraethyl orthosilicate (TEOS) within the micro-emulsion. The average particle size and morphology of synthesized silicon dioxide was about 100nm and spherical, respectively. The average particles size and morphology of the used carbon black powders was about 20nm and spherical, respectively. The molar ratio of silicon dioxide and carbon black was fixed to 1:3 in the preparation of each combination. SiO2 and carbon black powders were mixed in ethanol and ball-milled for 12 h. After mixing, the slurries were dried at 80˚C in an oven. The dried powder mixtures were placed in alumina crucibles and synthesized in a tube furnace at 1400~1500˚C for 4 h with a heating rate of 10˚C/min under flowing Ar gas (160 cc/min) and furnace cooling down to room temperature. SiC nanoparticles were characterized by XRD, TEM, and SAED. The XRD results showed that high purity beta silicon carbide with excellent crystallinity was synthesized. TEM revealed that the powders are spherical shape nanoparticles with diameters ranging from 15 to 30 nm with a narrow distribution.

저자
  • 정광진(창원대학교 나노 신소재 공학부) | Jeong, Kwang-Jin
  • 배동식( 창원대학교 나노 신소재 공학부) | 배동식