검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2024.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        New piezoelectric and triboelectric materials for energy harvesting are being widely researched to reduce their processing cost and complexity and to improve their energy conversion efficiency. In this study, BaTiO3 films of various thickness were deposited on Ni foams by R.F. magnetron sputtering to study the piezoelectric and triboelectric properties of the porous spongy structure materials. Then piezoelectric nanogenerators (PENGs) were prepared with spongy structured BaTiO3 and PDMS composite. The output performance exhibited a positive dependence on the thickness of the BaTiO3 film, pushing load, and poling. The PENG output voltage and current were 4.4 V and 0.453 μA at an applied stress of 120 N when poled with a 300 kV/cm electric field. The electrical properties of the fabricated PENG were stable even after 5,000 cycles of durability testing. The triboelectric nanogenerators (TENGs) were fabricated using spongy structured BaTiO3 and various polymer films as dielectrics and operated in a vertical contact separation mode. The maximum peak to peak voltage and current of the composite film-based triboelectric nanogenerator were 63.2 V and 6 μA, respectively. This study offers new insights into the design and fabrication of high output nanogenerators using spongy structured materials.
        4,000원
        2.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        BaTiO3-Poly vinylidene fluoride (PVDF) solution was prepared by adding 0~25 wt% BaTiO3 nanopowder and 10 wt% PVDF powder in solvent. BaTiO3-PVDF film was fabricated by spreading the solution on a glass with a doctor blade. The output performance increased with increasing BaTiO3 concentration. When the BaTiO3 concentration was 20 wt%, the output voltage and current were 4.98 V and 1.03 μA at an applied force of 100 N. However, they decreased when the over 20 wt% BaTiO3 powder was added, due to the aggregation of particles. To enhance the output performance, the generator was poled with an electric field of 150~250 kV/cm at 100 °C for 12 h. The output performance increased with increasing electric field. The output voltage and current were 7.87 V and 2.5 μA when poled with a 200 kV/cm electric field. This result seems likely to be caused by the c-axis alignment of the BaTiO3 after poling treatment. XRD patterns of the poled BaTiO3-PVDF films showed that the intensity of the (002) peak increased under high electric field. However, when the generator was poled with 250 kV/cm, the output performance of the generator degraded due to breakdown of the BaTiO3-PVDF film. When the generator was matched with 800 Ω resistance, the power density of the generator reached 1.74 mW/m2. The generator was able to charge a 10 μF capacitor up to 1.11 V and turn on 10 red LEDs.
        4,000원
        3.
        2021.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        K0.5Bi0.5TiO3 (KBT) thin films were prepared by sol-gel processing for future use in piezoelectric generators. It is believed that the annealing temperature of films plays an important role in the output performance of piezoelectric generators. KBT films prepared on Ni substrates were annealed at 500 ~ 700 oC. Tetragonal KBT films were formed after annealing process. As the annealing temperature increased, the grain size of KBT films increased. KBT thin films show piezoelectric constant (d33) from 23 to 41 pC/N. The increase of grain size in KBT films brought about output voltage and current in the KBT generators. Also, the increase in the displacement of specimens during bending test resulted in increases in output voltage and current. Although KBT generators showed lower output power than those of generators prepared using NBT films, as reported previously, the KBT films prepared by sol-gel method show applicability as piezoelectric thin films for lead-free nanogenerators, along with NBT films.
        4,000원
        4.
        2019.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A stacked high-voltage (900 V) Al electrolytic capacitor made with ZrO2 coated anode foils, which has not been studied so far, is realized and the effects of Zr-Al-O composite layer on the electric properties are discussed. Etched Al foils coated with ZrO2 sol are anodized in 2-methyl-1,3-propanediol (MPD)-boric acid electrolyte. The anodized Al foils are assembled with stacked structure to prepare the capacitor. The capacitance and dissipation factor of the capacitor with ZrO2 coated anode foils increase by 41 % and decrease by 50 %, respectively, in comparison with those of Al anode foils. Zr-Al- O composite dielectric layer is formed between separate crystalline ZrO2 with high dielectric constant and amorphous Al2O3 with high ionic resistivity. This work suggests that the formation of a composite layer by coating valve metal oxide on etched Al foil surface
        4,000원
        5.
        2016.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To increase the capacitance of an Al electrolytic capacitor, the anodic oxide film, Al2O3, was partly replaced by an Al2O3-ZrO2 (Al-Zr) composite film prepared by the vacuum infiltration method and anodization. The microstructure and composition of the prepared samples were investigated by scanning electron microscopy and transmission electron microscopy. The coated and anodized samples showed multi-layer structures, which consisted of an inner Al hydrate layer, a middle Al- Zr composite layer, and an outer Al2O3 layer. The thickness of the coating layer could go up to 220 nm when the etched Al foil was coated 8 times. The electrical properties of the samples, such as specific capacitance, leakage current, and withstanding voltages, were also characterized after anodization at 100 V and 600 V. The capacitances of samples with ZrO2 coating were 36.3% and 27.5% higher than those of samples without ZrO2 coating when anodized at 100 V and 600 V, respectively.
        4,000원
        6.
        2015.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The oxide films formed on etched aluminum foils play an important role as dielectric layers in aluminum electrolytic capacitors. Y2O3-doped ZrO2 (YZ) films were coated on the etched aluminum foils by sol-gel dip coating, and the electrical properties of YZ-coated Al foils were characterized. YZ films annealed at 450 oC were crystallized into a cubic phase, and as the Y2O3 doping content increased, the unit cell of ZrO2 expanded and the grain size decreased. The etch pits of Al foils were filled by YZ sol when it dried at atmospheric pressure after repeating for several times, but this step could essentially be avoided when being dried in a vacuum. YZ-coated foils indicated that the specific capacitance and dissipation factor were 2-2.5 μF/cm2 and 2-4 at 1 kHz, respectively, and the leakage current and withstanding voltage of films approximately 200 nm thick were 5 × 10−4A at 21 V and 22 V, respectively. After being anodized at 500 V, the foils exhibited a specific capacitance and dissipation factor of 0.6-0.7 μF/cm2 and 0.1-0.2, respectively, at 1 kHz, while the leakage current and withstanding voltage were 2 × 10−4 - 3 × 10−5 A at 400 V and 420-450 V, respectively. This suggests that YZ film is a promising dielectric that can be used in high voltage Al electrolytic capacitors.
        4,000원