For the selective catalytic reduction of NOx with ammonia (NH3-SCR), a V2O5WO3/TiO2 (VW/nTi) catalyst was prepared using V2O5 and WO3 on a nanodispersed TiO2 (nTi) support by simple impregnation process. The nTi support was dispersed for 0~3 hrs under controlled bead-milling in ethanol. The average particle size (D50) of nTi was reduced from 582 nm to 93 nm depending on the milling time. The NOx activity of these catalysts with maximum temperature shift was influenced by the dispersion of the TiO2. For the V0.5W2/nTi-0h catalyst, prepared with 582 nm nTi-0h before milling, the decomposition temperature with over 94 % NOx conversion had a narrow temperature window, within the range of 365-391 °C. Similarly, the V0.5W2/nTi-2h catalyst, prepared with 107 nm nTi-2h bead-milled for 2hrs, showed a broad temperature window in the range of 358~450 °C. However, the V0.5W2/Ti catalyst (D50 = 2.4 μm, aqueous, without milling) was observed at 325-385 °C. Our results could pave the way for the production of effective NOx decomposition catalysts with a higher temperature range. This approach is also better at facilitating the dispersion on the support material. NH3-TPD, H2-TPR, FT-IR, and XPS were used to investigate the role of nTi in the DeNOx catalyst.
HAE-06 extract is a mixture of four medicinal plants, namely Lonicerae Folium et Caulis (Lonicera japonica), Scutellariae Radix (Scutellaria baicalensis), Adenophorae Radix (Adenophora triphylla var. japonica), and Polygonati Oddorati Rhizoma (Polygonatum odoratum var. pluriflorum). The HAE-06 extract demonstrated a concentration-dependent relaxing effect and enhanced cAMP production in bronchial smooth muscle that had been stimulated to contract with acetylcholine. Using a blocker, it was confirmed that the effect was through the β2-adrenergic receptor/cAMP/PKA pathway. In addition, it is thought that the HAE-06 extract has a bronchial smooth muscle relaxation effect by reducing the inflow of Ca2+ through the K+ and Ca2+ channels present in the sarcoplasmic membrane. If research continues in the future, it is believed that it will be possible to use it as a material for pharmaceuticals and functional foods.
Nanosized Gd2O3:Eu3+ red phosphor is prepared using a template method from metal salt impregnated into a crystalline cellulose and is dispersed using a bead mill wet process. The driving force of the surface coating between Gd2O3:Eu3+ and mica is induced by the Coulomb force. The red phosphor nanosol is effectively coated on mica flakes by the electrostatic interaction between positively charged Gd2O3:Eu3+ and negatively charged mica above pH 6. To prepare Gd2O3:Eu3+-coated mica (Gd2O3:Eu/mica), the coating conditions are optimized, including the stirring temperature, pH, calcination temperature, and coating amount (wt%) of Gd2O3:Eu3+. In spite of the low luminescence of the Gd2O3:Eu/mica, the luminescent property is recovered after calcination above 600℃ and is enhanced by increasing the Gd2O3:Eu3+ coating amount. The Gd2O3:Eu/mica is characterized using X-ray diffraction, field emission scanning electron microscopy, zeta potential measurements, and fluorescence spectrometer analysis.
Gd2O3:Eu3+ red phosphors were prepared by template method from crystalline cellulose impregnated by metal salt. The crystallite size and photoluminescence(PL) property of Gd2O3:Eu3+ red phosphors were controlled by varying the calcination temperature and Eu3+ mol ratio. The nano dispersion of Gd2O3:Eu3+ was also conducted with a bead mill wet process. Dependent on the time of bead milling, Gd2O3:Eu3+ nanosol of around 100 nm (median particle size : D50) was produced. As the bead milling process proceeded, the luminescent efficiency decreased due to the low crystallinity of the Gd2O3:Eu3+ nanoparticles. In spite of the low PL property of Gd2O3:Eu3+ nanosol, it was observed that the photoluminescent property was recovered after re-calcination. In addition, in the dispersed nanosol treated at 85 oC, a self assembly phenomenon between particles appeared, and the particles changed from spherical to rod-shaped. These results indicate that particle growth occurs due to mutual assembly of Gd(OH)3 particles, which is the hydration of Gd2O3 particles, in aqueous solvent at 85 oC.
Nanosized and aggregated Y2O3:Eu Red phosphors were prepared by template method from metal salt impregnated into crystalline cellulose. The particle size and photoluminescent property of Y2O3:Eu red phosphors were controlled by variation of the calcination temperature and time. Dispersed nanosol was also obtained from the aggregated Y2O3:Eu Red phosphor under bead mill wet process. The dispersion property of the Y2O3:Eu nanosol was optimized by controlling the bead size, bead content ratio and milling time. The median particle size (D50) of Y2O3:Eu nanosol was found to be around 100 nm, and to be below 90 nm after centrifuging. In spite of the low photoluminescent properties of Y2O3:Eu nanosol, it was observed that the photoluminescent property recovered after re-calcination. The dispersion and photoluminescent properties of Y2O3:Eu nanosol were investigated using a particle size analyzer, FE-SEM, and a fluorescence spectrometer.
Transparent organic-inorganic hybrid hard coating films were prepared by the addition of SiO2 or ZrO2, as an inorganic filler to improve the hardness property, filler was highly dispersed in the acrylic resin. To improve the compatibility in the acrylic resin, SiO2 or ZrO2 is surface-modified using various silanes with variation of the modification time and silane content. Depending on the content and kind of the modified inorganic oxide, transparent modified inorganic sols were formulated in acryl resin. Then, the sols were bar coated and cured on PET films to investigate the optical and mechanical properties. The optimized film, which has a modified ZrO2 content of 4 wt% markedly improved in terms of the hardness, haze, and transparency as compared to neat acrylate resin and acrylate resin containing modified SiO2 content of 8 wt%. Meanwhile, the low transparency and high haze of these films slowly appeared at SiO2 content above 10 wt% and ZrO2 content of 5 wt%, but the hardness values were maintained at 2H and 3H, respectively, in comparison with the HB of neat acrylate resin.
Al2O3 nanosol dispersed under ethanol or N-Methyl-2-pyrrolidone(NMP) was studied and optimized with various dispersion factors and by utilizing the silane modification method. The two kinds of Al2O3 powders used were prepared by thermal decomposition method from aluminum ammonium sulfate(AlNH4(SO4)2) while controlling the calcination temperature. Al2O3 sol was prepared under ethanol solvent by using a batch-type bead mill. The dispersion properties of the Al2O3 sol have a close relationship to the dispersion factors such as the pH, the amount of acid additive(nitric acid, acetic acid), the milling time, and the size and combination of zirconia beads. Especially, Al2O3 sol added 4 wt% acetic acid was found to maintain the dispersion stability while its solid concentration increased to 15 wt%, this stability maintenance was the result of the electrostatic and steric repulsion of acetic acid molecules adsorbed on the surface of the Al2O3 particles. In order to observe the dispersion property of Al2O3 sol under NMP solvent, Al2O3 sol dispersed under ethanol solvent was modified and solventexchanged with N-Phenyl-(3-aminopropyl)trimethoxy silane(APTMS) through a binary solvent system. Characterization of the Al2O3 powder and the nanosol was observed by XRD, SEM, ICP, FT-IR, TGA, Particles size analysis, etc.
To study the dispersion factors of silica sol prepared from fumed silica powder, we prepared silica sol under an aqueous system using a batch type bead mill. The dispersion properties of silica sol have a close relationship to dispersion factors such as pH, milling time and speed, the size and amount of zirconia beads, the solid content of fumed silica, and the shape and diameter of the milling impellers. Especially, the silica particles in silica sol were found to show dispersion stability on a pH value above 7, due to the electrostatic repulsion between the particles having a high zeta potential value. The shape and diameter of the impellers installed in the bead mill for the dispersion of fumed silica was very important in reducing the particle size of the aggregated silica. The median particle size (D50) of silica sol obtained after milling was also optimized according to the variation of the size and amount of the zirconia beads that were used as the grinding medium, and according to the solid content of fumed silica. The dispersion properties of silica sol were investigated using zeta potential, turbiscan, particle size analyzer, and transmission electron microscopy.
PURPOSES: This study intends to develop an inorganic soil pavement material using industrial by-products and to evaluate its applicability as a road pavement material.
METHODS: In this study, a compressive strength experiment was conducted based on the NaOH solution molarity and water glass content to understand the strength properties of the soil pavement material according to the mixing ratio of alkali activator. In addition, the strength characteristic of the inorganic soil pavement material was analyzed based on the binder content. The performance of the soil pavement was evaluated by conducing an accelerated pavement test and a falling weight deflectometer (FWD) test.
RESULTS: As a result of the soil pavement material test based on the mixture ratio of alkali activator, it was identified that the activator that mixed a 10 M NaOH solution to water glass in a 5:5 ratio is appropriate. As a result of the inorganic soil pavement materials test based on the binder content, the strength development increased sharply when the amount of added binder was over 300 kg; this level of binder content satisfied 28 days of 18 MPa of compression strength, which is the standard for existing soil pavement design. According to the measured results of the FWD test, the dynamic k-value did not show a significant difference before or after the accelerated pavement testing. Furthermore, the effective modulus decreased by approximately 50%, compared with the initial effective modulus for pedestrian pavement.
CONCLUSIONS: Based on these results, inorganic soil pavement can be applied by changing the mixture proportions according to the use of the pavement, and can be utilized as road pavement from light load roads to access roads.
Fe2O3 coated plate mica(Fe2O3/mica) for infrared reflectance red pigment was prepared under hydrothermal treatment. Fe2O3 was perfectly coated on mica via the difference of surface charge between Fe2O3 and mica particles at pH 3. Fe2O3/mica was then calcined at 800 oC to stabilize the coated layer on mica. The infrare (IR) reflectance pigments were characterized by X-ray diffraction, FE-SEM, zeta potential, and a UV-Vis-NIR spectrophotometer. In particular, the CIE color coordinate and IR reflectance properties of Fe2O3/mica pigments were investigated in relation to the thickness variation of the Fe2O3 layer coated on mica of various lateral sizes. The isolation-heat red paints containing the pigments were prepared and optimized with a thinner, settling agent, and dispersant. Then, the films were made. The thermal property of isolation-heat on these films was observed through the relationship of the IR reflectance value, which was based on the variation of the Fe2O3 layer’s thickness coated on mica and mica’s lateral size as IR reflectance pigment. With an increase in IR reflectance on these films, the thermal property of isolation-heat was effectively enhanced.
CMP(Chemical Mechanical Polishing) Processes have been used to improve the planarization of the wafers in the semiconductor manufacturing industry. Polishing performance of CMP Process is determined by the chemical reaction of the liquid sol containing abrasive, pressure of the head portion and rotational speed of the polishing pad. However, frictional heat generated during the CMP process causes agglomeration of the particles and the liquidity degradation, resulting in a non-uniform of surface roughness and surface scratch. To overcome this chronic problem, herein, we introduced NaCl salt as an additive into silica sol for elimination the generation of frictional heat. The added NaCl reduced the zata potential of silica sol and increased the contact surface of silica particles onto the sapphire wafer, resulting in increase of the removal rate up to 17 %. Additionally, it seems that the silica particles adsorbed on the polishing pad decreased the contact area between the sapphire water and polishing pad, which suppressed the generation of frictional heat.
최근 흙포장은 친환경 재료로 알려지기 시작하면서 시공이 점차 늘어나고 있는 추세이다. 그러나 기존 흙 포장은 자연상태의 흙에 시멘트와 경화제를 혼합하여 포설되고 있으며, 강도 발현은 시멘트의 첨가량(일반 적으로 15~20wt%)에 의존하고 있다. 시멘트는 소성과정에서 1400℃이상의 막대한 에너지가 소비되며, 온 실가스의 주요인인 이산화탄소를 다량으로 배출하고 있으며, 이는 전세계 온실가스의 7%에 달한다. 따라서 국내외 콘크리트 제조업체들은 시멘트 제조시 발생되는 이산화탄소의 감축을 위한 기술개발을 위해 노력을 하고 있다. 본 연구에서는 기존 흙포장 재료에서 시멘트를 대체하기 위하여 산업부산물(고로슬래그 미분말, 플라이애쉬)을 이용한 무시멘트 무기계 습식 흙포장 재료의 배합비에 따른 강도실험을 수행하였다.
Fe4[Fe(CN)6]3 coated on a mica or TiO2/mica surface as infrared reflective blue pigment was prepared by a hydrothermal method. Fe4[Fe(CN)6]3, used as coloring agent, was uniformly coated on mica or TiO2/mica under the optimized condition of a 1.2 : 1 weight ratio between iron(III) chloride hexahydrate and potassium ferrocyanidetrihydrate at the initial pH level of 4.5 at 70˚C. The infrared (IR)-reflective pigments were characterized by SEM, Zeta-potenial, FT-IR, and UV-VIS NIR spectrophotometry. Especially the CIE color coordinate and total solar reflectance(TSR) properties of the pigments were investigated in relation to variation of the coating and coated substrate thicknesses. Isolation-heat paint was prepared with 20 wt% blue pigments fully dispersed in acryl-urethane resin and several additives to coat the film uniformly. The films were also measured with CIE color coordinate, TSR, and the surface temperature was recorded by an isolation-heat measuring system. The pigments and films of Fe4[Fe(CN)6]3 coated on mica and TiO2/mica showed high TSR values compared with the TSR value of Fe4[Fe(CN)6]3 itself. According to the increase of TSR value, the property of isolation-heat is effective. To realize the optimal blue color, we applied the the pigment to TiO2 coated mica(TM(b)) which has blueish interference color. The pigment of Fe4[Fe(CN)6]3 coated on TM(b) shows a strong blue color compared with that of Fe4[Fe(CN)6]3 coated on TiO2/Mmca(TM(w)), which has a whitish interference color.
The purpose of this study was to provide a practical guide to the proper way of lifting a patient using various types of stretcher that rescue crews use by analyzing the load on the lumbar region. The experiment was conducted with working male and female rescue crews. Having mixed groups of gender complete tasks such as lifting, moving, and unloading a patient using four different types of stretcher, we recorded variations of the lumbar bending angle and calculated the load on the lumbar region using 3D SSPP. The data showed, in terms of the lumbar bending angle, it was greater when only females were involved in the work, and there were very significant differences in the angle depending on the types of stretcher used and body sizes of each subject. In the analysis of the load on the lumbar based on the bending angle, NIOSH was over the recommended limit in certain groups. Utilizing the analysis, it is recommended, in the medium and long term, to improve equipments for rescue personnel and to guide them to the proper way of working.
The purpose of this study was to provide a practical guide to the use of various stretchers that rescue workers use by analyzing muscle fatigue degree associated with lifting a patient. The experiment was conducted with working male and female rescue crews. Having mixed groups of gender complete tasks such as lifting, moving, and unloading a patient using four different types of stretcher, we recorded each muscle fatigue degree in the shoulder and lower back regions of each subject. The data showed, in terms of muscle activity, differences within each group of genders and its combinations were significant in certain muscle groups depending on the types of stretcher used and body sizes of each subject, and, when it comes to Elerctor Spenae, the female subjects used more muscular strength than the males did. In regards to the muscle fatigue degree, there was no significant difference found within each group of the genders, body sizes, and their combinations. However, in the case of applying different models of stretcher, there were significantly differences in the fatigue degree.
Coatings composited with alumina and Perfluoro alkoxyalkane (PFA) resin were deposited on stainless steel plate (SUS304) to further improve corrosion resistance. Plate (ca. 10μm) and/or nanosize (27~43 nm) alumina used as inorganic additives were mixed in PFA resin to make alumina-fluoro composite coatings. These coatings were deposited on SUS304 plate with wet spray coating and then the film was cured thermally. According to the amount and ratio of the two kinds of alumina having plate morphology and nano size, corrosion resistance of the film was evaluated under strong acids (HF, HCl) and a strong base (NaOH). The film prepared with the addition of 5~10 wt% alumina powders in PFA resin showed corrosion resistance superior to that of pure PFA resin film. However, for the film prepared with alumina content above 10 wt%, the corrosion resistance did not improve with the physical properties, such as surface hardness and adhesion. The film prepared with plate/nanosize (weight ratio = 1/2) alumina especially enhanced the surface hardness and corrosion resistance. This can be explained as showing that the plate and the nanosize alumina dispersed in PFA resin effectively suppressed the penetration of cations and anions due to the long penetration length and fewer defects that accompany the improved surface hardness under a serious environment of 10% HF solution for over 120 hrs.
본 연구는 BSC의 성공적 구축과 활용에 있어 최근 변화하는 경영환경에 적절하게 대응하고, 기업의 경영활동에서 비재무적 요소가 차지하는 중요성을 감안하여 무형적자원의 대표적 요소인 R&D 지출과 관련하여 BSC의 KPI를 개발하고, 개발된 지표의 효용성을 실증분석을 통해 검정하고자 하였다. 본 연구를 통해 BSC의 KPI로써 개발된 PEI(Patent Efficiency Index)는 R&D 지출과 R&D의 output 개념인 특허와의 상관성을 고려하여 특허의 효율성 측면에서 만들어 졌으며, 기존의 R&D관련 KPI가 가진 문제점을 해결하고, R&D 성과측정에 관한 새로운 KPI개발을 시도 하였다는 점에서 연구적 의의가 있다고 하겠다. 또한 지표의 효용성에 대한 실증분석 결과, 논문의 관심변수인 PEI는 종속변수인 기업경영성과의 대용치로 나타내어진 ROA(총자산이 익률)과 토빈Q에 각각 유의한 양의 영향을 미치는 것으로 나타났으며 그동안 기존 연구들에서 많은 관심을 가져왔던 R&D 지출보다 R&D의 성과측정지표로서의 설명력이 더 높은 것으로 나타났다. 이상 결과를 통해 개발된 PEI는 기존의 R&D 지출이 기업성과에 미치는 영향을 설명하는데 있어 설명하지 못하는 추가적인 설명력을 가진다고 할 수 있다. 나아가 이 지표를 통해 기업이 얼마나 효율적인 R&D 활동을 하고 있는지 알 수 있으며, 이는 기업의 R&D 활동의 효율성이 높을 때 기업의 가치나 성과가 높아진다는 것을 시사한다. 본 연구는 기업의 R&D 지출과 기업경영성과 간의 관련성을 특허와 R&D 지출의 효율적인 측면을 측정한 PEI를 통하여 직접적으로 입증함으로써 기존의 R&D 비용 외에 기업의 기업경영성과를 가늠하고 판단할 수 있는 중요한 지표로 쓰일 수 있다는 것을 규명할 수 있을것으로 기대된다.