검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to examine the effects of display on time on tasks and virtual presence in the immersive virtual reality. Head mounted display (HMD) and monitor conditions were compared when the participants were asked to complete navigation tasks in a virtual classroom. Time on tasks and virtual presence were measured. Three factors of the virtual presence were applied as dependent variables such as 1) spatial presence, 2) involvement, and 3) realness. The results showed that HMD condition took longer time to finish tasks than monitor conditions. HMD condition showed significantly higher perception from all of the virtual presence factors. Interestingly, there was a significant interaction effect between the display conditions and presence factors. The relationship between display types and virtual presence factors were discussed for future study.
        4,000원
        2.
        2012.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The particle size of MgO was examined as a function of the Na content in Mg(OH)2 powders and the calcination temperature. Mg(OH)2 suspension was obtained by dropwise precipitation of Mg(NO3)2·6H2O and NaOH solutions. The suspension was diluted by varying the dilution volume ratio of distilled water to Mg(OH)2 suspension to change the Na salt concentration in the suspension. Mg(OH)2 slurry was filtered and dried at 60˚C under vacuum, and then its Mg(OH)2 powder was calcined to produce MgO with different amount of Na content at 500~900˚C under air. Investigation of the physical and chemical properties of the various MgO powders with dilution ratio and calcination temperature variation was done by X-ray diffraction, transmission electron microscopy, BET specific surface area and thermal gravimetric analysis. It was observed that MgO particle size could depend on the condition of calcination temperature and dilution ratio of the Mg(OH)2 suspension. The particle size of the MgO depends on the Na content remaining in the Mg(OH)2 powder, which powder was prepared by changing the dilution ratio of the Mg(OH)2 suspension. This change increased as the calcination temperature increased and decreased as the dilution ratio increased. The growth of MgO particle size according to the increase of temperature was more effective when there was a relatively high content of Na. The increase of Na content lowered the temperature at which decomposition of Mg(OH)2 to MgO took place, thereby promoting the crystal growth of MgO.
        4,000원