To study the dispersion factors of silica sol prepared from fumed silica powder, we prepared silica sol under an aqueous system using a batch type bead mill. The dispersion properties of silica sol have a close relationship to dispersion factors such as pH, milling time and speed, the size and amount of zirconia beads, the solid content of fumed silica, and the shape and diameter of the milling impellers. Especially, the silica particles in silica sol were found to show dispersion stability on a pH value above 7, due to the electrostatic repulsion between the particles having a high zeta potential value. The shape and diameter of the impellers installed in the bead mill for the dispersion of fumed silica was very important in reducing the particle size of the aggregated silica. The median particle size (D50) of silica sol obtained after milling was also optimized according to the variation of the size and amount of the zirconia beads that were used as the grinding medium, and according to the solid content of fumed silica. The dispersion properties of silica sol were investigated using zeta potential, turbiscan, particle size analyzer, and transmission electron microscopy.
Fe4[Fe(CN)6]3 coated on a mica or TiO2/mica surface as infrared reflective blue pigment was prepared by a hydrothermal method. Fe4[Fe(CN)6]3, used as coloring agent, was uniformly coated on mica or TiO2/mica under the optimized condition of a 1.2 : 1 weight ratio between iron(III) chloride hexahydrate and potassium ferrocyanidetrihydrate at the initial pH level of 4.5 at 70˚C. The infrared (IR)-reflective pigments were characterized by SEM, Zeta-potenial, FT-IR, and UV-VIS NIR spectrophotometry. Especially the CIE color coordinate and total solar reflectance(TSR) properties of the pigments were investigated in relation to variation of the coating and coated substrate thicknesses. Isolation-heat paint was prepared with 20 wt% blue pigments fully dispersed in acryl-urethane resin and several additives to coat the film uniformly. The films were also measured with CIE color coordinate, TSR, and the surface temperature was recorded by an isolation-heat measuring system. The pigments and films of Fe4[Fe(CN)6]3 coated on mica and TiO2/mica showed high TSR values compared with the TSR value of Fe4[Fe(CN)6]3 itself. According to the increase of TSR value, the property of isolation-heat is effective. To realize the optimal blue color, we applied the the pigment to TiO2 coated mica(TM(b)) which has blueish interference color. The pigment of Fe4[Fe(CN)6]3 coated on TM(b) shows a strong blue color compared with that of Fe4[Fe(CN)6]3 coated on TiO2/Mmca(TM(w)), which has a whitish interference color.