The emission of nitrogen oxides has a great environmental impact. It leads to Los Angeles type smog, and it recently has attracted attention as a source of ultrafine dust. The main sources of nitrogen oxides are internal combustion engines and industrial boilers. These emission sources are processes that are essential for human industrial activities, so the regulation of original use is impossible. Therefore, special control methods should be applied to reduce NOx emissions into the atmosphere. In this study, we investigated how the supply of ER and urea influences the removal of nitrogen oxides from SRF combustion boilers. Experimental results show that the removal efficiency of nitrogen oxides can be up to 80% under the conditions of ER 2.0 and a urea feed of 0.5 LPM.
In this study, the combustion characteristics were investigated based on the biodrying solid recovered fuel (SRF) in a 5 Ton/day scale combustion boiler. The composition of the combustion gas containing the biodrying SRF was analyzed, the particulate matter, and its HCl content was determined with the air pollutant process test method. Mass balance, carbon balance, and combustion efficiency were calculated according to the equivalence ratio (ER) method; the energy recovery efficiency of the combustion boiler was also analyzed. The overall combustion efficiency of the biodrying SRF was 97.3 % and the energy recovery efficiency was 80.2%.
In the case of solid refuse fuel manufacturing facilities, residues, which are left-over from the process, are buried at a rate of 34% of incoming amount, and some are disposed of by combustion. The residues were upgraded by mechanical biological treatment and subject to attempts at combustion, and the bottom ash generated from combustion tests was applied to fabricate bricks for recycling. The brick was manufactured by substitutions of stone powder, cement, sand ranging from by 3 to 30% according to experimental conditions. These could be used as an interlocking block for the sidewalk or open spaces. The basic characteristics of the bottom ash and the water absorption, bending strength, compressive strength, and dimensions of the mixed bricks were tested. Results showed that 10% of the stone powder substitution was regarded as an optimal condition, and the brick quality was satisfactory under given standards, because the pozzolanic and hydration reactions occurred effectively.
In this study, to cope with the renewable portfolio standard system, a thermochemical process was applied to coffee residues. After the basic thermal characteristics analysis, it was judged that the gasification process could be applied because the volatile matter in coffee residues was high. The temperature and equivalent air ratio were set by using the data and the gasification characteristics with varying equivalent ratios were evaluated. Also, the experiments were conducted in a downdraft fixed bed reactor which was easy to operate and generates less tar. The best experimental results at equivalent ratio of 0.3 were obtained with syngas composition, lower heating value of product gas, gas yield, and tar yield of 16.94%, 1,410 kcal/Nm3, 2.04 Nm3/kg and 33.33 mg/L respectively. Also, cold gas efficiency and carbon conversion rate as the most important indicators of gasifier performance were 63.83% and 88.59% respectively. Comparing the gasification characteristics with sawdust in the same reactor, the value of coffee residue was higher in the cold gas efficiency but the amount of tar was higher. However, we could apply the gasification technology to coffee residues if we carried out studies to improve the gasification efficiency and to reduce the amount of tar. Furthermore, we take into consideration the fact that the supply of coffee residues was insufficient to use as a single feedstock and the consequent necessity to study the means of using it with other available fuel materials.
수은의 노출로부터 인간의 건강과 환경을 보호하기 위해 수은에 관한 미나마타 협약(Minamata Convention on Mercury)이 UNEP에 의해 2013년 10월에 채택되었다. 협약문 제11조에서는 3가지 종류의 수은폐기물에 관한 내용을 다루고 있다. 이 중 수은오염폐기물이 가장 큰 비중을 차지하며 산업시설로부터 다양한 종류의 부산물로써 환경으로 배출된다. 국내 산업시설에서 배출되는 수은오염폐기물은 폐기물관리법 공정시험법에서 지정하고 있는 용출시험법에 지정폐기물 또는 산업폐기물로 분류되고 있다. 본 연구에서는 산업시설에서 배출된 3가지 종류의 고상시료(생활폐기물 소각시설 비산재, 의료폐기물 소각시설 비산재, 비철금속 재련시설 폐슬러지)의 적정처리를 위해 안정화기술을 적용하였다. 환경에서 수은은 HgCl2, HgS, HgO 등의 형태로 존재하며 각 화합물은 열적안정도 또는 용해상수가 서로 다르다. 이와 같은 이유로 수계나 토양으로의 유출특성과 안정도를 알아보기 위해 총 5단계의 용출용매로 구성된 단계적 용출법(Sequential Extration Procedure, SEP)을 적용하였다. 용출용매로써 0.5M NH4Cl(1단계), 0.01M HCl+0.1M CH3COOH(2단계), 1M KOH(3단계), 12M HNO3(4단계) 및 Aqua regia(5단계)를 사용하였다. 1,2단계에서 용출된 수은화합물의 경우 다른 단계에 비해 이동도가 커 자연조건에서 쉽게 용출될 가능성이 높다. 3단계는 1,2 단계보다 상대적으로 강한 구조로 결합된 화학종이 용출된다. 4,5단계에서 용출된 수은화합물은 안정도가 높고 이동도가 낮아 자연조건에서 용해되기 어려운 화학종이라고 판단된다. EDTA는 중금속의 이동성을 높여주며 용액에 이온화된 상태로 수은화합물을 전환시켜 오히려 용출률을 높여 줄뿐만 아니라 수용액 상태로 용해시키기 위해서는 pH를 높여줄 첨가물이 필요하다. 이를 위해 Na2S를 사용하였고 Na로 인한 용액의 pH 상승과 S2-를 이용하여 이온화된 Hg2+를 HgS로 전환하여 더욱 안정화된 수은화합물을 형성하였다. 이를 확인하기 위해 안정화 처리 후 발생된 고상시료를 대상으로 단계적 용출법을 재적용 하였으며 5단계의 비율이 증가하는 것을 확인하여 안정화 처리기술을 검증하였다.
기존 단순소각 및 매립방식의 전통적인 방법으로 처리되던 생활폐기물이 내포하고 있는 가연성 에너지 자원을 보다 효율적으로 재활용하기 위한해 고형연료화 처리하는 시설이 연구단계를 넘어 상용급 시설로 발돋움하고 있으나, 반입되는 생활폐기물 대비 30 ~ 45%의 저품위 잔재물이 발생하며 대부분이 매립을 통해 처리되고 있는 실정이다. 생분해성 유기물질에 의해 발생되는 미생물의 호기성 분해열을 이용하여 폐기물의 함수율을 감소시키는 Bio-drying 기술을 통해 고형연료 생산에서 발생한 잔재물을 고형연료 품질기준 수준으로 끌어올려 고형연료 생산수율을 향상시킴과 동시에 매립되는 비율을 최소화 할 수 있다. Bio-drying 기술을 통해 생산된 저품위 잔재물 기반 고형연료를 활용하여 열에너지를 회수하기 위해 0.1톤/일 Bench급 연소보일러에 적용한 선행연구를 진행하였다. 본 연구에서는 저품위 잔재물을 활용하여 Bio-drying 공정으로 생산한 Bio-drying 고형연료의 연소특성을 파악하기 위해 0.1톤/일 Bench급 연소보일러 테스트 결과를 바탕으로 5톤/일급 연소보일러 시스템을 구축하였다. 수냉 화격자 방식의 5톤/일급 연소보일러 시스템은 연소로, 에너지회수보일러, 열교환기, 건식세정탑, 백필터 구성되어 있다. 5톤/일급 연소보일러 시스템의 성능평가 및 Bio-drying 고형연료의 연소특성을 파악하기 위해 공기비(Equivalent Ratio, ER)에 따른 연소효율을 분석하였으며, 연소가스에 포함된 대기오염물질 분석을 수행하였다. 또한, 연소 후 발생한 바닥재의 강열감량, XRD 및 XRF 분석을 통해 바닥재 발생특성을 파악하였다.
생활폐기물을 처리하는 일반적인 기술은 재활용, 소각, 매립이 주로 사용되고 있으나 소각의 경우 환경적 영향과 유해성을 이유로 혐오시설로 인식되어 신규시설의 설치와 내구 년 수가 도래한 설비의 대보수에 있어 주민반대에 의한 어려움을 겪고 있으며 매립의 경우 매립연한의 제한적인 요소와 더불어 2018년 시행된 자원순환기본법으로 인하여 매립양의 감소를 위한 해결방안이 필요한 실정이다. 이러한 문제점의 대안으로 가연성 폐기물을 이용한 고형연료(SRF, Solid Refuse Fuel)제조 기술이 도입되어 전국적으로 확대 시행되고 있으며 가연성 폐기물을 이용한 SRF의 생산은 폐자원의 에너지화와 자원순환적인 측면에서 긍정적인 영향을 미치고 있다. 근래 SRF의 생산을 목표로 하는 기술(MBT, Mechanical Biological Treatment)의 도입은 생물학적 처리(BT)가 제외된 기계적 처리(MT) 시설의 형태로 적용되었다. 이러한 기계적 처리 기술 위주의 적용은 높은 함수율의 폐기물이 SRF 제조시설로 반입될 경우 반입량 대비 30~45%가 잔재물로 배출되는 문제를 발생시킨다. 배출된 잔재물은 대부분 매립장으로 보내지게 되며 SRF 생산 효율의 감소와 운영비의 증가를 초래할 수 있다. 또한 SRF 제조시설에서 발생되는 잔재물의 함수율은 40% 이상으로 매립이나 소각에 의한 방법으로 처리할 경우 환경부하와 잠재적 자원의 손실을 가져올 수 있다. SRF 제조시설에서 배출되는 잔재물은 Bio-drying 및 선별/회수 공정을 거쳐 SRF 품질 기준에 도달하는 연료로 재생될 수 있으며 이렇게 제조된 고형연료에 대한 연소특성 실험에 의한 연구결과를 검토할 필요가 있다고 판단된다. 본 연구에서는 Bio-drying 및 선별/회수 공정을 거쳐 재생된 SRF가 에너지원으로 활용가능한지 검토하기 위하여 S시의 판매용 SRF와 본 연구에서 재생된 SRF의 연소특성 실험을 수행하였으며 연소효율, 보일러의 효율, 회재의 발생량과 강열감량, 대기오염물질의 배출량에 대한 연구결과로 재생된 SRF의 활용 가능성을 판단하였다. 연구결과에서 판매용 SRF와 재생된 SRF의 연소효율은 95% 이상으로 큰 차이를 보이지 않았으며 바닥재의 강열감량도 2~5% 수준으로 분석되었다. 대기오염물질은 배출허용기준 이하로 평가되어 환경적인 영향에도 큰 문제가 없는 것으로 확인되었다.
This study discusses regeneration of mercury-contaminated, activated carbon from adsorption in the mercuryrecovery process. Mercury in activated carbon was desorbed by thermal treatment, and the regeneration efficiency was confirmed by mercury content and iodine adsorption comparing new and spent activated carbon. Up to 95% of mercury desorbed and up to 86% adsorption performance regenerated at 673 K. Therefore, it is expected that activated carbon can be reused many times by regenerating it through thermal treatment without disposing of mercury-containing activated carbon.
Bottom ash char, which is released and collected from a solid refuse fuel (SRF) gasification pilot plant, has been used as a feed material for one more step of the gasification process. This char contains higher unburned materials than the bottom ash collected from incineration plants. This could have sufficient potential for application to gasification technology. The lab-scale gasification experimental process consists of a downdraft gasifier, a cyclone, a scrubber, and a filtering system for the analysis of syngas. To find the optimal conditions and to decrease loss on ignition, the air equivalent ratio (ER) was adjusted from 0.1 to 0.5. The results of this experiment showed that 0.2 ER was the optimal condition, with 32.41% of cold gas efficiency and 40.41% of carbon conversion ratio. However, compared to the general gasification process, this efficiency and conversion ratio still seem to be low since the feedstock was the leftovers of the gasification process with a lower amount of volatile carbonaceous components. Furthermore, with increasing ER, the loss on ignition of the bottom ash in this experiment decreases due to the enhancement of the oxidation reaction. On average, it decreased by up to about 20% compared to the feedstock.
수은의 배출로부터 국민의 건강과 환경을 보호하기 위하여 국제수은협약(Minamata Convention on Mercury)이 2013년도에 채택되었다. Article 11에서는 수은폐기물을 수은 오염, 함유, 구성 폐기물 등 총 3가지 종류로 구분하여 정의하고 있다. 현재 국내법 체계상 수은폐기물은 따로 분류 및 처리되고 있지 않은 상황이다. 국내 수은폐기물은 발생원에 따라 넓은 농도범위의 수은을 포함하고 있다. 산업시설에서 발생한 수은폐기물은 지정 폐기물로 분류되어 폐기물관리법에서 지정하고 있는 고형화 처리 후 매립되고 있다. 매립된 고농도 수은 함유 폐기물은 장기간에 걸쳐 환경에 노출되었을 때 시멘트 고화체로부터 고농도 수은 함유 침출수가 유출되어 2차 오염원이 발생할 가능성이 높다. 그러므로 본 연구에서는 고형화 처리를 거쳐 매립된 수은폐기물이 매립지에 장기간 존재하였을 때 환경에 미칠 영향을 알아보고자 하였다. 또한 수은폐기물의 처리방법으로써 고형화 처리법이 적절한 방법인지 알아보기 위해 장기용출 시험법을 적용해보았다. 대상 시료로써 국내 산업시설 발생 폐슬러지 및 원소수은을 사용하였다. 시멘트 고화체 제작을 위해 현재 국내 폐기물관리법에 명시된 고형화물 1 m³ 당 시멘트 150 kg 이상 첨가기준 및 28일의 양생기간을 준수하였다. 또한 장기용출 실험의 용출용매로써 pH 4, 7, 10의 버퍼용액을 사용하였다. 용출용매는 1, 3, 7, 28일 주기로 교체해 주었다. 용출액 수은 함량분석 결과 초기단계에 용출시험 기준치 수은항목 0.005 mg/L 이상의 수은이 용출되었음을 확인하였다. 28일 이후에 용출되는 수은량이 점차 감소하는 추세를 나타내었으나 여전히 수은이 용출되는 것을 확인하였다. 이러한 실험결과로 보아 고농도 수은폐기물을 대상으로 고형화 처리를 진행하는 것은 적절하지 않은 방법으로 판단된다. 그러므로 고농도 수은폐기물은 고형화 처리 이외의 기술을 적용시킬 필요가 있으며 고농도의 수은을 포함하고 있는 수은폐기물의 매립을 제한할 필요가 있다고 판단된다.
수은의 배출로부터 국민의 건강과 환경을 보호하기 위해 국제수은협약(Minamata Convention on Mercury)이 채택되었다. 수은은 다양한 경로를 통해 환경으로 배출되며 의도적 배출원의 경우 그 양이 상당하여 적정처리 기술 개발이 필요한 시점이다. 활성탄은 가격대비 탁월한 흡착성능 때문에 다양한 산업시설에서 활용되고 있으며 국내의 경우 지속적인 사용량 증가를 나타내고 있다. 이러한 활성탄의 사용 추세와 더불어 환경으로 배출되는 폐 활성탄 또한 증가하고 있다. 일부 폐 활성탄은 지정폐기물로 관리되고 있으나 처리 및 관리에 많은 비용이 소모되어 환경적・경제적으로 문제가 되고 있다. 이에 본 연구에서는 환경으로 배출되는 수은의 양을 줄임과 동시에 다양한 산업시설에서 활용되고 배출되는 수은함유 폐 활성탄을 재생하는데 목적을 두었다. 본 연구에서는 수은으로 오염된 폐 활성탄을 재생해보고자 다양한 온도 조건에서 운반가스로 질소(N2, 0.1L/min)를 주입하였으며 0.2atm, 1atm으로 압력조건을 설정 하였다. 또한 각각의 열처리 조건에서 온도 유지시간별 재생효율을 평가하기 위해 온도 유지시간을 10min, 30min, 60min으로 달리 하여 열처리 실험을 진행 하였다. 열처리 후 활성탄은 US EPA Method를 이용하여 수은 함량을 분석하였고 추가적으로 요오드 흡착성능 실험을 통해 수은으로 오염된 활성탄의 재생효율을 평가하였다. 열처리된 활성탄의 수은 함량은 초기 폐 활성탄(30 ppm) 대비 최대 1%까지 줄어드는 것을 확인하였고 요오드 흡착성능의 경우 초기 폐 활성탄 흡착성능의 최대 90%까지 재생되는 것으로 확인되었다. 환경적・경제적 성과를 높이기 위해 현재까지 진행된 연구에 더불어 재생된 활성탄을 재사용한 후 추가적인 재생 실험을 진행하여 재생한계점을 도출해 내는 것이 필요할 것으로 사료된다. 또 한 재생실험으로 폐 활성탄에서 분리된 수은 및 수은 화합물의 추가적인 안정화 작업 및 적정처분이 필요할 것으로 사료된다.
전 세계적으로 자원의 고갈과 온실가스로 인한 기후변화가 지구의 환경을 위협하는 요인으로 작용하고 있다. 이에 국내에서는 폐기물의 재활용을 촉진하고, 더 높은 부가가치를 부여하기 위한 기술・정책적 노력들이 이루어지고 있다. 그 중 하나로 생활폐기물을 기계적 선별공정과 생물학적 처리 공정이 결합된 MBT(Mechanical Biological Treatment) 시설이 도입되었다. 국내에서 발생되는 폐기물은 가연분 함량이 높아 SRF(Solid Refuse Fuel)로 생산할 경우 에너지 자원의 대체제로 사용 가능성이 크다고 판단된다. 이에 본 연구에서는 국내에서 생산되는 SRF에 대하여 기초특성분석을 실시하고 효율적인 열에너지 회수를 위해 연소실험을 진행하였다. 시료의 기초특성분석결과, 수분, 회분함량이 낮고 탄소성분과 발열량이 높게 나타났다. 연소 특성 및 오염 물질의 발생 특성을 파악하기 위하여 고정층 반응기에서 공기비 1.8~2.6 범위에서 실험을 진행하였다. 뿐만 아니라 각 공기비에서의 배가스 성분을 연소가스측정기(MK9000)를 이용해 그 특성을 알아보았으며 가스상 오염물질 배출특성을 알아보기 위하여 오염물질인 HCN, HCl 에 대해 분석을 실시하였다. 배가스 특성에서 CO의 농도가 거의 0%로 나타난 것으로 보아 완전연소가 잘 일어나고 있음을 판단 할 수 있었다. 또한 배출된 가스상 오염물질의 경우 배출 허용기준(HCl 15ppm, HCN 5ppm)을 모두 만족하는 것으로 나타났지만 NOx의 경우, 배출 허용 기준(80ppm)에 비해 약간 높은 값을 보였다. 모든 조건을 고려하였을 때 연소 반응이 활발히 일어나는 것을 알 수 있었지만 SRF를 연소공정에 적용시 추가적인 NOx 제어 시설이 필수적으로 설치되어야 할 것으로 판단된다.
전 세계적으로 전자・전기 제품의 개발 속도가 빨라짐에 따라 집에서 사용하는 가전제품의 교체 주기가 점차 빨라지고 있는 추세이며, 사용이 완료된 가전제품은 재사용되기도 하지만 대부분이 폐기 처리되고 있는 실정이다. 특히, 가전제품 중 냉장고 등에 포함되어 있는 폴리우레탄(Polyurethane)의 경우 단열성 및 경량화가 가능한 장점들을 가지고 있어 다양한 가전제품에 사용되고 있다. 하지만 폴리우레탄의 경우 고분자 폐기물로써 자연적으로 분해되는데 걸리는 시간이 상당히 소요된다. 따라서 본 연구에서는 낮은 밀도를 가지는 폐 우레탄의 단점을 보완하고자 고형연료화 기술을 적용시켜 펠렛화 하였으며 이를 통해 합성가스를 생산하고자 가스화 공정에 적용하였다. TG 분석 및 기초특성분석을 통해 실험 조건을 설정하였으며 그 중 equivalent ratio (ER)를 변화시킴에 따라 최적 조건을 도출하고자하였다. 특히, 가스화로의 경우 유동층에 비하여 비교적 운전이 용이한 고정층 가스화로를 적용하였다. 가스화 공정 적용 후 배출되는 합성가스에 대해서 Micro-GC를 통한 정성 분석, dry gas meter (DGM)를 통한 가스의 정량 분석 및 가스상 오염물질 중 질소 화합물인 NH3, HCN에 대하여 분석을 진행하였다. 그 결과 가스화 공정 운영에 있어 비교적 안정적인 운영이 가능하였으며 가스화 성능 지표인 냉가스 효율(CGE, cold gas efficiency)과 탄소 전환율 (CCE, carbon conversion efficiency) 결과 각각 약 60%, 50% 값을 보였다. 또한, 가스상 오염물질의 경우 HCN 약 150 ppm, NH3 약 50 ppm으로 이를 제어하기 위한 부가적인 제어시설이 필요하다고 판단된다.