검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2016.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The cobalt silicides were investigated for employment as a catalytic layer for a DSSC. Using an E-gun evaporation process, we prepared a sample of 100 nm-thick cobalt on a p-type Si (100) wafer. To form cobalt silicides, the samples were annealed at temperatures of 300 oC, 500 oC, and 700 oC for 30 minutes in a vacuum. Four-point probe, XRD, FE-SEM, and CV analyses were used to determine the sheet resistance, phase, microstructure, and catalytic activity of the cobalt silicides. To confirm the corrosion stability, we also checked the microstructure change of the cobalt silicides after dipping into iodide electrolyte. Through the sheet resistance and XRD results, we determined that Co2Si, CoSi, and CoSi2 were formed successfully by annealing at 300 oC, 500 oC, and 700 oC, respectively. The microstructure analysis results showed that all the cobalt silicides were formed uniformly, and CoSi and CoSi2 layers were very stable even after dipping in the iodide electrolyte. The CV result showed that CoSi and CoSi2 exhibit catalytic activities 67 % and 54 % that of Pt. Our results for Co2Si, CoSi, and CoSi2 revealed that CoSi and CoSi2 could be employed as catalyst for a DSSC.
        4,000원
        2.
        2016.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To alloy high melting point elements such as boron, ruthenium, and iridium with copper, heat treatment was performed using metal oxides of B2O3, RuO2, and IrO2 at the temperature of 1200 oC in vacuum for 30 minutes. The microstructure analysis of the alloyed sample was confirmed using an optical microscope and FE-SEM. Hardness and trace element analyses were performed using Vickers hardness and WD-XRF, respectively. Diffusion profile analysis was performed using D-SIMS. From the microstructure analysis results, crystal grains were found to have formed with sizes of 2.97 mm. For the copper alloys formed using metal oxides of B2O3, RuO2, and IrO2 the sizes of the crystal grains were 1.24, 1.77, and 2.23 mm, respectively, while these sizes were smaller than pure copper. From the Vickers hardness results, the hardness of the Ir-copper alloy was found to have increased by a maximum of 2.2 times compared to pure copper. From the trace element analysis, the copper alloy was fabricated with the expected composition. From the diffusion profile analysis results, it can be seen that 0.059 wt%, 0.030 wt%, and 0.114 wt% of B, Ru, and Ir, respectively, were alloyed in the copper, and it led to change the hardness. Therefore, we verified that alloying of high melting point elements is possible at the low temperature of 1200 oC.
        4,000원
        3.
        2015.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We prepared 8 samples of non-silver and silver-added master alloys containing silicon to confirm the existence of nickel-silicides. We then prepared products made of 14K and 18K white gold by using the prepared master alloys containing 0.25, 0.35, and 0.50 wt% silicon to check for nickel release. We then employed the EN 1811 testing standard to investigate the nickel release of the white gold products, and we also confirmed the color of the white gold products with an UV-VISNIR- color meter. We observed NiSix residue in all master alloys containing more than 0.50 wt% Si with EDS-nitric acid etching. For the white gold products, we could not confirm the existence of NiSix through XRD after aqua regia etching. In the EN 1811 test, only the white gold products with 0.25 wt% silicon master alloys successfully passed the nickel release regulations. Moreover, we confirmed that our white gold products showed excellent Lab indices as compared to those of commercial white gold ones, and the silver-added master alloys offered a larger L index. Our results indicate that employing 0.25 wt% silicon master alloys might be suitable for white gold products without nickel-silicide defects and nickel release problems.
        4,000원