This study investigated the growth behavior and characteristics of compounds formed at the interface between a liquid Al-Si-Cu alloy and solid cast iron. Through microstructural analyses, it was observed that various AlFe and AlFeSi phases are formed at the interface, and the relative proportion of each phase changes when small amounts of strontium are added to the Al alloy. The results of the microstructural analysis indicate that the primary phases of the interfacial compounds in the Al-Si-Cu base alloy are Al8Fe2Si and Al4.5FeSi. However, in the Sr-added alloys, significant amounts of binary AlFe intermetallic compounds such as Al5Fe2 and Al13Fe4 formed, in addition to the AlFeSi phases. The inclusion of Sr has a slight diminishing effect on the rate at which the interfacial compounds layer thickens during the time the liquid Al alloy is in contact with the cast iron. The study also discusses the nano-indentation hardness and micro-hardness of the interfacial phases.
This study focuses on how the partial substitution of copper by nickel nanoparticles affects the electrical and structural properties of the Bi2Ba2Ca2Cu2.9Ni0.1O10+δ, Bi2Ba2Ca2Cu2.8Ni0.2O10+δ and Bi2Ba2Ca2Cu2.6Ni0.4O10+δ compounds. Approximate values of crystallization size and crystallization percentage for the three compounds were calculated using the Scherer, modified Scherer, and Williamson-Hall methods. A great similarity was observed in the crystal size values from the Scherer method, 243.442 nm, and the Williamson-Hall method, 243.794 nm for the second sample. At the same time this sample exhibited the highest crystal size value for the three methods. In the examination of electrical properties, the sample with 0.1 partial substitution, Bi2Ba2Ca2Cu2.9Ni0.1O10+δ was determined to be the best with a critical temperature of 100 K and an energy gap of 6.57639 × 10-21 MeV. Using the SEM technique to analyze the structural morphology of the three phases, it was discovered that the size of the granular forms exceeds 25 nm. It was determined that the samples’ shapes alter when nickel concentration rises. The patterns that reveal the distribution of the crystal structure also exhibit clear homogeneity.
In this study we examine variations in the structure of perovskite compounds of LaBa2Cu2O9, LaBa2CaCu3O12 and LaBa2Ca2Cu5O15 synthesized using the solid state reaction method. The samples’ compositions were assessed using X-ray fluorescence (XRF) analysis. The La: Ba: Ca: Cu ratios for samples LaBa2Cu2O9, LaBa2CaCu3O12 and LaBa2Ca2Cu5O15 were found by XRF analysis to be around 1:2:0:2, 1:2:1:3, and 1:2:2:5, respectively. The samples’ well-known structures were then analyzed using X-ray diffraction. The three samples largely consist of phases 1202, 1213, and 1225, with a trace quantity of an unknown secondary phase, based on the intensities and locations of the diffraction peaks. According to the measured parameters a, b, and c, every sample has a tetragonal symmetry structure. Each sample’s mass density was observed to alter as the lead oxide content rose. Scanning electron microscope (SEM) images of the three phases revealed that different Ca-O and Cu-O layers can cause different grain sizes, characterized by elongated thin grains, without a preferred orientation.
Transparent conductive tungsten (W) doped indium oxide (In2O3; IWO) films were deposited at different substrate bias voltage (-Vb) conditions at room temperature on glass substrates by radio frequency (RF) magnetron sputtering and the influence of the substrate bias voltage on the optical and electrical properties was investigated. As the substrate bias voltage increased to -350 Vb, the IWO films showed a lower resistivity of 2.06 × 10-4 Ωcm. The lowest resistivity observed for the film deposited at -350 Vb could be attributed to its higher mobility, of 31.8 cm2/Vs compared with that (6.2 cm2/Vs) of the films deposited without a substrate bias voltage (0 Vb). The highest visible transmittance of 84.1 % was also observed for the films deposited at the -350 Vb condition. The X-ray diffraction observation indicated the IWO films deposited without substrate bias voltage were amorphous phase without any diffraction peaks, while the films deposited with bias voltage were polycrystalline with a low In2O3 (222) diffraction peak and relatively high intensity (431) and (046) diffraction peaks. From the observed visible transmittance and electrical properties, it is concluded that the opto-electrical performance of the polycrystalline IWO film deposited by RF magnetron sputtering can be enhanced with effective substrate bias voltage conditions.