This paper proposes the armored combat bulldozer, essential for amphibious tasks, requires water ingress prevention and submersion capabilities, typically addressed by a centrifugal pump. This study aims to boost the bulldozer's drainage pump efficiency by replacing the traditional aluminum 3-blade impeller with one made of ASA material using 3D printing. Analysis via ANSYS Fluent revealed that the 5-blade impeller increased discharge volume by 19.31% and efficiency by 6.07%, while the 6-blade variant saw a 27.07% increase in discharge volume and 8.81% efficiency improvement. Further scrutiny with ANSYS Static Structure ensured the new impellers' structural integrity and robustness under extreme conditions. This research confirms the potential of 3D printing in enhancing military equipment, demonstrating significant improvements in pump performance and opening paths for advanced manufacturing techniques to meet the demanding needs of combat vehicles.
ZnO/Cu/ZnO (ZCZ) thin films were deposited at room temperature on a glass substrate using direct current (DC) and radio frequency (RF, 13.56 MHz) magnetron sputtering and then the effect of post-deposition electron irradiation on the structural, optical, electrical and transparent heater properties of the films were considered. ZCZ films that were electron beam irradiated at 500 eV showed an increase in the grain sizes of their ZnO(102) and (201) planes to 15.17 nm and 11.51 nm, respectively, from grain sizes of 13.50 nm and 10.60 nm observed in the as deposited films. In addition, the film’s optical and electrical properties also depended on the electron irradiation energies. The highest opto-electrical performance was observed in films electron irradiated at 500 eV. In a heat radiation test, when a bias voltage of 18 V was applied to the film that had been electron irradiated at 500 eV, its steady state temperature was about 90.5 °C. In a repetition test, it reached the steady state temperature within 60 s at all bias voltages.
Transparent conductive tungsten (W) doped indium oxide (In2O3; IWO) films were deposited at different substrate bias voltage (-Vb) conditions at room temperature on glass substrates by radio frequency (RF) magnetron sputtering and the influence of the substrate bias voltage on the optical and electrical properties was investigated. As the substrate bias voltage increased to -350 Vb, the IWO films showed a lower resistivity of 2.06 × 10-4 Ωcm. The lowest resistivity observed for the film deposited at -350 Vb could be attributed to its higher mobility, of 31.8 cm2/Vs compared with that (6.2 cm2/Vs) of the films deposited without a substrate bias voltage (0 Vb). The highest visible transmittance of 84.1 % was also observed for the films deposited at the -350 Vb condition. The X-ray diffraction observation indicated the IWO films deposited without substrate bias voltage were amorphous phase without any diffraction peaks, while the films deposited with bias voltage were polycrystalline with a low In2O3 (222) diffraction peak and relatively high intensity (431) and (046) diffraction peaks. From the observed visible transmittance and electrical properties, it is concluded that the opto-electrical performance of the polycrystalline IWO film deposited by RF magnetron sputtering can be enhanced with effective substrate bias voltage conditions.
Herbal medicine has been the basis for medical treatments through much of human history, and such traditional medicine is still widely practiced today. Modern medicine makes use of many plant-derived compounds as the basis for pharmaceutical drugs. In traditionally, Achyranthes aspera, Safflower (Carthamus tinctorius) seed and Acanthopanax senticosus have been used for the treatment and prevention of bone-related diseases. In this study, we investigated the pharmacological effect of mixture of Achyranthes aspera, Safflower (Carthamus tinctorius) seed and Acanthopanax senticosus and the other herbs. Two types of enzymes were used to enhance the extraction components of amino acid, mineral content, free sugar, and flavor recovery in extracting natural herbal mixtures(NME). We evaluated regulation of osteogenic differentiation in human bone marrow mesenchymal stem cells using alkaline phosphatase staining, alizarin red S staining and RT-PCR. The CCK-8 assay indicated that NME had no cytotoxicity but increased cell survival. In addition, NME promoted the mineralization and expression of osteogenic differention marker genes in human bone marrow mesenchymal stem cells. Therefore, NME has an effect of promoting proliferation and osteogenic differentiation of human mesenchymal stem cell.
가상현실이란 디지털로 표현된 가상 환경을 뜻하며 인터넷 쇼핑, 아바타 등 기본적으로 디지털 환경을 일컫는 단어이며, 최근에는 머리에 장착하는 디스플레이(HMD : Head Mounted Display)의 등장으로 사용자가 현실과 유사한 환경을 직접 경험하는 체험형 콘텐츠로서 의미를 확장했다. 현재 가상현실은 게임을 비롯한 힐링 콘텐츠, 관광, 군사 시뮬레이션 다양한 분야에서 주목받고 있으며 HMD의 보급 또한 활발하다. 사용자가 가상현실 콘텐츠를 체험하기 위해서는 몇 가지 제약이 발생하는데, 사용자의 시야가 차단되 현실공간감각이 상실된다. 따라서 기존에 사용되었던 입력장치인 키보드, 마우스 등의 사용에 어려움이 있으며 HMD를 개발하는 개발사들은 위의 문제를 해결하고자 가상현실 체험에 특화된 핸드트래킹 디바이스를 제공한다. 하지만 이 또한 상호작용, 이동, 제스처가 손에 집중되어있어 가상환경에 익숙하지 않은 이용자의 사용자 편의가 낮다. 본 논문은 이러한 이동의 문제를 아두이노를 통해 제작한 발 트레킹 디바이스로 이동을 분리시켜 해결하고자 하였다. IMU의 각속도계와 가속도계를 이용해 다리의 궤적을 측정하려 하였고, 이때 발생한 오차는 상보필터를 통해 해결하였다. 또한 기본적으로 발생하는 센싱-통신-연산 과정에서의 노이즈는 두가지 이동평균기법과 생략평균값을 이용해 안정화 시켰다. 사용자는 해당 장비와 Oculus Rift를 착용하고 Unity3d환경으로 구축된 실험환경에서 임무 수행 속도, 이동방향 오차율등을 측정해 기존 HMD컨트롤러와 본 논문에서 제시하는 컨트롤러를 비교 검증했다. 실험 결과 임무 수행 속도와 이동 오차율 모두에서 본 논문에서 제시하는 장치가 우수한 데이터를 제공하였다. 본 실험 결과를 토대로 이동조작 분리가 높은 접근성을 제공한다는 것을 확인하였다. 본 논문은 HMD 이동 컨트롤러를 포함한 이후 개발되는 다양한 사용자 제스처 인식 컨트롤러에도 적용 가능할것으로 보인다.