검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 27

        1.
        2012.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The microstructure and tensile properties of Al-Mn/Al-Si hybrid aluminum alloys prepared by electromagnetic duocasting were investigated. Only the Al-Mn alloy showed the typical cast microstructure of columnar and equiaxed crystals. The primary dendrites and eutectic structure were clearly observed in the Al-Si alloy. There existed a macro-interface of Al-Mn/Al-Si alloys in the hybrid aluminum alloys. The macro-interface was well bonded, and the growth of primary dendrites in Al-Si alloy occurred from the macro-interface. The Al-Mn/Al-Si hybrid aluminum alloys with a well-bonded macro-interface showed excellent tensile strength and 0.2% proof stress, both of which are comparable to those values for binary Al-Mn alloy, indicating that the strength is preferentially dominated by the deformation of the Al-Mn alloy side. However, the degree of elongation was between that of binary Al-Mn and Al-Si alloys. The Al-Mn/Al-Si hybrid aluminum alloys were fractured on the Al-Mn alloy side. This was considered to have resulted from the limited deformation in the Al-Mn alloy side, which led to relatively low elongation compared to the binary Al-Mn alloy.
        4,000원
        2.
        2011.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to fabricate the porous metal with controlled pore characteristics, unique processing by using metal oxide powder as the source and camphene as the sublimable material is introduced. CuO powder was selected as the source for the formation of Cu metal via hydrogen reduction. Camphene-based CuO slurry, prepared by milling at with a small amount of dispersant, was frozen at . Pores were generated subsequently by sublimation of the camphene. The green body was hydrogen-reduced at for 30 min, and sintered at for 1 h. Microstructural analysis revealed that the sintered Cu showed aligned large pore channels parallel to the camphene growth direction, and fine pores are formed around the large pore. Also, it showed that the pore size was controllable by the slurry concentration.
        4,000원
        3.
        2010.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Sm-16.7wt%Co alloy powders were prepared by high energy ball milling under the conditions of various milling time and the content of process control agent (PCA), and their microstructure and magnetic properties were investigated to establish optimum processing conditions. The initial powders employed showed irregular shape and had a size ranging from 5 to . After milling for 5 h, the shape of powders changed to round shape and their mean powder size was approximately , which consisted of the agglomerated nano-sized particles with 15 nm in diameter. The coercivity was reduced with increasing the milling time, whereas the saturation magnetization increased. As the content of PCA increased, the powder size minutely decreased to approximately at the PCA content of 10 wt%. The XRD patterns showed that the main diffraction peaks disappeared apparently after milling, indicating the formation of amorphous structure. The measured values of coercivity were almost unchanged with increasing the content of PCA.
        4,000원
        4.
        2009.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The aging characteristics of gas atomized Mg-6 wt.% Al-1 wt.% Zn alloy were investigated and compared to those of cast Mg-6 wt.% Al alloy. The gas atomized Mg-6 wt.% Al-1wt.% Zn alloy powders had spherical morphology between 1 and 100 in diameter. After compaction under the pressure of 700 MPa at for 10 min, the Mg-6 wt.% Al-1 wt.% Zn alloy showed a grain size of approximately 40 which is smaller than that of the cast Mg-6 wt.% Al alloy, and a relative compact density of approximately 93%. After ageing, the Mg-6 wt.% Al-1 wt.% Zn alloy showed much faster peak hardness than cast Mg-6 wt.% Al alloy. The Mg-6 wt.% Al-1 wt.% Zn alloy showed the new fine precipitations with ageing time, while the cast Mg-6 wt.% Al alloy was almost similar morphology.
        4,000원
        5.
        2008.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Pure Mg and Mg-6wt.%Al alloy were coated by the plasma electrolytic oxidation with various coating times and the microstructural and mechanical characteristics of the coatings were investigated. The coatings on pure Mg and Mg-6wt.%Al alloy consisted of MgO and Mg2SiO4. The surface roughness and thickness of the coatings became larger as the coating time increased. The coatings on the Mg-6wt.%Al alloy were more uniform and thicker than those on pure Mg. The microhardness and friction coefficient of the coatings increased progressively as the coating time increased. In addition, the coatings on the Mg-6wt.%Al alloy compared to pure Mg showed improved microhardness and a better friction coefficient.
        4,000원
        6.
        2007.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Plasma electrolytic oxidation (PEO) treatment was performed on cast Mg-6 wt%Al alloy solution-treated at 693K for 16h and aged at 498K. The surface roughness, thickness, micro-hardness, wear and corrosion properties of coatings on solution-treated and aged Mg-6 wt%Al alloy were investigated. The coatings on aged Mg-6 wt%Al alloy had thinner layer and lower micro-hardness and wear resistance than the solution-treated Mg-6 wt%Al alloy. As the aging time increased, the thickness of coatings decreased while the surface roughness was almost no changed. In addition, the micro-hardness and wear property of coatings decreased with increasing the aging time unlike the uncoated Mg-6 wt%Al alloy showing the peak micro-hardness and the best wear property after aging for 16 h. However, the coatings on Mg-6 wt%Al alloy peak-aged for 16h revealed the best corrosion resistance in 3.5% NaCl solution, which was explained based on the microstructural characteristics.
        4,000원
        7.
        2007.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The microstructure, mechanical and electrochemical properties of plasma electrolytic coatings (PEO) coatings on Mg-4.3 wt%Zn-1.0 wt%Y and Mg-1.0 wt%Zn-2.0 wt%Y alloys prepared by gas atomization, followed by compaction at 320 for 10 min under the pressure of 700 MPa and sintering at 380 and 420 respectively for 24 h, were investigated, which was compared with the cast Mg-1.0 wt%Zn alloy. All coatings consisting of MgO and oxides showed porous and coarse surface features with some volcano top-like pores distributed disorderly and cracks between pores. In particular, the surface of coatings on Mg-1.0 wt%Zn-2.0 wt%Y alloy showed smaller area of pores and cracks compared to the Mg-4.3 wt%Zn-1.0 wt%Y and Mg-1.0 wt%Zn alloys. The cross section micro-hardness of coatings on the gas atomized Mg-Zn-Y alloys was higher than that on the cast Mg-1.0 wt%Zn alloy. Additionally, the coated Mg-1.0 wt%Zn-2.0 wt%Y alloy exhibited the best corrosion resistance in 3.5%NaCl solution. It could be concluded that the addition of Y has a beneficial effect on the formation of protective and hard coatings on Mg alloys by plasma electrolytic oxidation treatment.
        4,000원
        8.
        2006.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aging characteristics and mechanical properties of commercial 7xxx series Al composites were investigated from viewpoint of ceramic contents. After sintering process, sintered densities of blended and composite powder were 95 and 97%, respectively. Each part was solution-treated at for 60 min and aged . And two-step aging was also performed form . The aging behavior of the sintered composite pow-der was different from that of sintered blended powder. The peak aging time of the composite was rapid as well due to strain. Before aging, mechanical properties of sintered composite powder was significantly higher than that of sintered blended powder. These increments of properties were directly affected by ceramic particles. However, after aging, incremental rate of mechanical properties was slowed in the composite
        4,000원
        9.
        2005.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        7xxx series Al alloy has the most attractive properties including its excellent high specific strength, stress corrosion cracking and corrosion-resistance. However, in case of the Al-Zn system, the liquid phase has a transient aspect because of the high solid solubility of Zn in Al. Therefore, transient liquid phase sintering behavior was observed during the sintering process. And the amount of liquid and its duration were influenced by the process variables including heating rate and final sintering temperature. At high heating rates(), the liquid fraction increased during sintering because diffusion was minimized and therefore local saturation could easily occur. The sintered density increased with increasing heating rate.
        4,000원
        11.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The bi-materials composed of and its composite reinforced with SiC particles were prepared by ball-milling and subsequent sintering process. The size of powder in Al-Mg/SiCp mixture decreased with increasing ball-milling time, it was saturated above 30 h when the ball and powder was in the ratio of 30 to 1. Both powders mixture and mixture were compacted under a pressure of 350MPa and were bonded by sintering at temperatures ranging from 873K to 1173K for 1-5h. At 873k, the sound bi-mate-rials could not be obtained. In contrast, the bi-materials with the macroscopically well-bonded interface were obtained at higher temperatures than 873K. The length of well-bonded interface became longer with increasing temperature and time, indicating the improved contact in the interface between unreinforced Al-Mg part and Al-Mg/SiCp composite part. The relative density in the bi-materials increased as the sintering temperature and time increased, and the bi-materials sintered at 1173K for 5h showed the highest density.
        4,000원
        16.
        2004.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 인체 내에서 방사성핵종의 거동에 관하여 국제방사선방호위원회에서 권고한 최근 호흡기 모델, 소화기 모델 및 생체동역학 모델을 사용하여 생물학적분석 자료로부터 섭취량과 예탁유효선량을 평가하기 위한 BIDAS 프로그램을 개발하였다. 프로그램은 생물학적분석 자료를 관리하는 데이터베이스 모듈, 각 방사성 핵종에 대한 예측 생물학적분석 양을 내장하고 있는 모듈, 측정된 생물학적분석 양에 근거하여 급성 및 만성 피폭으로부터 섭취량과 선량을 평가하는 계산모듈 등으로 구성되어 있다. 본 논문은 프로그램의 특성과 검증결과에 대해 기술한다.
        4,300원
        17.
        2004.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, chemical solution mixing and hydrogen reduction method was used to fabricate nanostructured alloy powders. Fe-Co chloride mixture, FeCl and COCI with 99.9% purity, were reduced in hydrogen atmosphere. Nanostructured Fe-Co alloy powders with a grain size of 50 nm were successfully fabricated. Magnetic properties of fabricated (x=0, 10, 30, 50, 70, 100) alloy powders with the same grain size were measured because size factor can affect magnetic properties. Coercivity of Fe-Co alloy powders were increased with increasing Co contents. Maximum value of coercivity in various Co contented Fe-Co alloy powders with similar grain size was 125 Oe at Fe. Saturation magnetization value at FeCo composition showed maximum value of 219 emu/g and saturation magnetization value decreased with increasing Co contents and minimum value of 155 emu/g was observed at Co.
        4,000원
        18.
        2004.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        방사성핵종의 특성, 섭취형태 그리고 내부피폭 감시주기는 작업자의 방사성핵종 섭취량 및 내부피폭선량 평가 결과에 중요한 영향을 줄 수 있다. 따라서 방사성핵종이 흡입섭취 될 경우 섭취형태(급성 또는 만성) 및 내부피폭 감시주기에 따른 섭취량 평가 오차를 계산하였다. 섭취 핵종으로는 /I(Type F), Cs(Type F), U(Type M, Type S)를 고려하였고, 방사능입자크기(AMAD)는 1 와 5 를 고려하였다. 섭취형태에 따라 평가된 섭취량의 상대오차는 방사성핵종, 흡수형태 그리고 내부피폭 감시주기에 따라 달랐으나, 입자크기에 의한 영향은 거의 없었다. 섭취형태 가정에 따른 섭취량 평가 오차를 10% 미만으로 줄일 수 있는 내부피폭 최대감시주기는 /I(Type F)에 대해 60일, Cs(Type F)에 대해 180일, U(Type M)에 대해 90일, 그리고 U(Type S)에 대해 360일로 나타났다.
        4,000원
        19.
        2004.02 KCI 등재 구독 인증기관·개인회원 무료
        The sintering characteristics of commercial 7xxx series Al-Zn-Mg-Cu alloy have been investigated. Sintering system of this blended elemental powder has aspects of both transient and supersolidus liquid phase sintering. Transient liquids occur when the constitution point during sintering lies in a solid phase region but where the sintering temperature is greater than either the melting point of one of the constituent or a eutectic temperature. Supersolidus liquid phase sintering occurs when a preblended powder is heated to a temperature between the solidus and liquids. However, these reaction were restrained their inter diffusion due to the appearance of the oxide film. Thus, 7xxx series Al alloy is extremely sensitive to process variables, including particle size, holding time and sintering temperature. Therefore, above phenomenons were observed formation and behaviour of the liquid by using SEM and DSC.
        20.
        2003.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Sintering behavior of 2xxx series Al alloy was investigated to obtain full densification and sound microstructure. The commercial 2xxx series Al alloy powder. AMB2712, was used as a starting powder. The mixing powder was characterized by using particle size analyzer, SEM and XRD. The optimum compacting pressure was 200 MPa, which was the starting point of the "homogeneous deformation" stage. The powder compacts were sintered at after burn-off process at . Swelling phenomenon caused by transient liquid phase sintering was observed below of sintering temperature. At , sintering density was increased by effect of remained liquid phase. Further densification was not observed above . Therefore, it was determined that the optimum sintering temperature of AMB2712 powder was .C.
        4,000원
        1 2